
 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Unexpected, Unreasonable, Unfixable:
Filesystem Attacks on macOS

Gergely Kalman
OBTS v6, 2023

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Who am I

● my name is Gergely (              ), but you can call me Greg
● lifetime computer nerd:

● hacking, linux, networks, coding (C, Python)
● my job is:

● sysadmin
● programmer
● entrepreneur
● consultant
● independent bug hunter

● my views are mine and mine alone

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Intro

● we will attack file operations on macOS

● this is the condensed version

● more info on my blog:
● https://gergelykalman.com
● or bottom right corner

● two bugs (that were cut) are already up

● the rest will follow
● my twitter: @gergely_kalman

https://gergelykalman.com/
https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Why attack file operations?

● they’re simple (to find and exploit)

● ubiquitous and often a result of bad design (→ hard to fix)

● a failed exploit has no downside
● they’re dangerous

● a treasure trove of “classic” LPEs 
● TCC + entitlements made a lot of useless bugs bounty-eligible

● by rugpulling POSIX and 30 years of legacy code
● Nobody is paying attention!

● and that’s good, because I can’t learn all the CFI / PPL / PaC BS

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Terminology

● LPE is user → root
● TCC bypass is user → user with FDA

● FDA → location, camera, contacts, etc...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

How hard are file operations?

● well...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

How hard are file operations?

“Everything is a file”
legacy filesystems

network filesystems

in-band signaling in file operations

symlinks are hard to prevent

race conditions everywhere

POSIX permissions are incredibly complex

. and .. are special

mountpoints can move CWD is unintuitive

no copy() syscall

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

How hard are file operations?

“Everything is a file”
legacy filesystems

network filesystems

in-band signaling in file operations

symlinks are hard to prevent

race conditions everywhere

POSIX permissions are incredibly complex

user mounting

reliance on extended attributes

. and .. are special
sandbox_exec

noowners

union mounts

(force) unmount

/.file,  /.vol/

applesingle/appledouble in-band signaling: /..namedfork/rsrc

case-insensitivity

firmlinks

hardlinked directories

user sets fs options

user can change mount options at runtime

mountpoints can move CWD is unintuitive

no copy() syscall

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

My bag of dirty tricks

● races: TOCTOUs, rename()s
● reshape the fs graph while in-use
● set CWD to a nonexistent directory
● hardlink a directory, hardlink a symlink
● use inheriting ACLs
● modify xattrs by editing applesingle / appledouble files
● rugpull programs

● by force unmounting
● by moving the mountpoint

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

My bag of dirty tricks

● mount (as a user):
● a network volume with 5s latency
● use mount options with noowners, union, etc...
● update the mountpoint or remount in place
● change filesystem o=>d?@i̙̍BC gDEe͆͜� �n̟͞� � c͕͊�	 n̟͞
�
● use filesystems that don’t support xattrs

● corrupt the filesystem image:
● create a directory loop
● hardlink directories at the top level
● make “..” point not to the parent
● create structures that normally would not be possible

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

File operations ARE hard

● an unprivileged user can do any/all of this

● So is this the end of the World?

● No, but Apple is in a tough spot…
● without total FS isolation, TCC will always be problematic
● but to be fair: TCC is better than nothing

● Apple doesn’t isolate apps with uids like Android

● IDK why, but if you do → DM me :)

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Our focus

● we will focus on TCC bypass and LPE
● lots of good syscalls, but the best are:

● open() and rename():
● they’re everywhere
● they’re easy to mess up
● they’re useful for LPEs and TCC bypasses

● these are promising, but I don’t have time:
● unlink(), rmdir(), mkdir(): Ubiquitous, but tricky to exploit

● honorable mentions:
● chmod, chown, setxattrs, umask, chflags, clonefile, readlink, link, 

symlink, etc…
● Rare and usually only good for LPEs

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The obstacles

1) file path control

2) file content control

● more control → higher severity

● partial control over each is only good for LPEs
● for TCC bypass you need full path and content control

● if I missed smth → DMs are open

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The allies

● lots of large entitled apps
● sudo
● bad POSIX APIs: O_NOFOLLOW, no symlink prevention, etc...
● atomic rename → renamex_np() / renameatx_np() + RENAME_SWAP
● user mounting

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The allies

● string truncation bugs
● can help you get full path control → common and deadly

● rename bugs:
● rename() always follows symlinks
● rename() can be racy...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The allies

● rename(“./tmp/a”, “./tmp/b”) is a race-condition
● “./tmp/a” and “./tmp/b” are looked up separately, and CWD is 

implicit
● if I control any non-last path component in CWD I can turn 

this into
● rename(“anything/a”, “somethingelse/b”)

● write a file called “b” anywhere, with fully controlled 
contents :)

● CAVEAT: rename(“./a”, “./b”) does not work, there has to be a 
real, attacker controlled subdirectory :(

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Things I look for

● insecure open():

● bad path, bad/missing flags
● classic access() / open() races
● file “copy”
● file “recreation”

● insecure rename():

● bad path
● dangerous renames

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The bugs

librarian (CVE-2023-38571) - TCC bypass - check blog

unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass

2)sqlol (CVE-2023-32422) - TCC bypass

3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE

5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Cut bugs

● librarian - TCC bypass
● fully controlled rename() in Music

● unnamed sbx escape - app sbx escape
● sandbox escape by preventing quarantine xattr placement using 

devfs and symlinks

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #1 Lateralus

● lateralus (CVE-2023-32407) - TCC bypass

● insecure file write in the Metal library

● MTL_DUMP_PIPELINES_TO_JSON_FILE=”path/name”
● Foundation's NSFileManager createFileAtPath is used:

● open()s new tempfile: “path/.dat.nosyncXXXX.XXXXXX” (X is 
random)

● writes the contents
● calls rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

● dangerous rename with full control over the path

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #1 Lateralus

● how do we get content control?

● impossible if we use “~/Library/Application 
Support/com.apple.TCC/” directly

● but we can use a controlled location

● wait for the temp file and open() it
● race the rename()

● in a loop: atomically swap the directory with a symlink
● → full control over path and contents

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #1 Lateralus

https://www.youtube.com/watch?v=JPrCwUFYPkw

https://gergelykalman.com/
https://www.youtube.com/watch?v=JPrCwUFYPkw


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #2 sqlol

● sqlol (CVE-2023-32422) - TCC bypass
● insecure file write in libsqlite (only on macOS)

● debug functionality in production (compiled with SQLITE_ENABLE_SQLLOG)
● SQLITE_SQLLOG_DIR="whatever" means:

● copy the opened DBs to whatever
● write a query log and index file as well

● files are created with open(), which:
● follows symlinks
● overwrites files

● a trivial infoleak, but I want to overwrite TCC.db

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #2 sqlol

● controlling the filename: use a symlink

● controlling content is tricky

● I can overwrite files, but only with debug files: the DB, the 
statement log, the index

● this stumped me a bit...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #2 sqlol

● until I realised:

● a sqlite DB can have multiple tables in it
● TCC.db is a sqlite DB

● we can “smuggle” the TCC.db’s tables into any other sqlite DB:

● Music has FDA, and a writable DB (Cache.db)
● I can add the TCC tables to it
● Cache.db can now replace and function as TCC.db :)
● we don’t even need to race

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #2 sqlol

https://www.youtube.com/watch?v=rfGcd0YrbTM

https://gergelykalman.com/
https://www.youtube.com/watch?v=rfGcd0YrbTM


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● batsignal (no CVE) – LPE

● collision with Joshua Mason’s CVE-2022-32801

● + a couple bypasses
● no credit, just a small bounty…

● Spotlight performs file operations on user-mounted volumes

● daemons mds and mds_stores run as root (mds even has FDA)
● they use a SIP-protected directory on the volume:

● “/.Spotlight-V100”

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

● v1: Exploiting Spotlight for the first time

Bugs: #3 batsignal

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● umount the disk and edit it offline

● changing a directory name is easy in HFS+ :)
● buf.replace(b’\x31\x00\x30\x00\x30\x00’, b'\x39\x00\x30\x00\x30\x00’)

● .Spotlight-V100 → .Spotlight-V900
● HFS+ is fine with this

● Spotlight won’t care

● SIP won’t notice

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● (one of the) bug(s):
● Spotlight writes cache files insecurely with open()

● to exploit:
● symlink a file in the Caches directory

● Spotlight will truncate and overwrite existing files
● the cache file has:

● attacker-controlled content
● a known filename → X.txt, where X is the inode number

● the fix: Spotlight no longer likes symlinks :(

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● v2: Exploiting Spotlight for the second time

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● the protection is still a regex engine

● it’s not filesystem-aware
● no idea about mountpoints, symlinks, etc…

● hardlinks are sort of like symlinks

● if they’re on the same volume
● Can we “merge” volumes?

● macOS does allow crazy things...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● Yes, we can use unions
● these complicate EVERYTHING

● but not for us :)
● union 101:

● two volumes mounted over each other
● top and bottom
● lookups start in top
● fall back to bottom

● they can also nest
● nest

● nest
● nest

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● to exploit:

● mirror Spotlight’s directory structure on the system disk 
(bottom)

● mount the volume over it with union (top)
● delete the target file from top, so it’s used from bottom

● where it’s hardlinked to /etc/sudoers
● This is how you symlink without symlinks!

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● the fix: Apple now disallows union mounts using SIP :(

● At least I got a bounty. After more than a year. Still no credit though

● conclusion:

● allowing users to mount disk images is crazy:
● attacker has all the leverage

● Apple does pay bounties
● but it’s complicated...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal v1

https://www.youtube.com/watch?v=Xvb9peOSys0

https://gergelykalman.com/
https://www.youtube.com/watch?v=Xvb9peOSys0


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #4 alfred

● alfred (CVE-2023-40443) - LPE

● really it’s batsignal v3

● to recap:

● Spotlight does insecure writes on user-provided volumes
● now we can’t use symlinks, or union-mounts :(

● What now?

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #4 alfred

● move the mountpoint :)

● by moving the parent
● rugpull mds → write to system volume

● Apple did a good job of restricting mds, with two exceptions:
● (regex #"^/private/var/folders/[^/]+/[^/]+/C/com.apple.metadata.mdworker($|/)")

● (regex #"^/private/var/folders/[^/]+/[^/]+/T/com.apple.metadata.mdworker($|/)")

● “/var/folders/RANDOM/RANDOM/T/com.apple.metadata.mdworker/”
● we’ll call this ^^^ tmpdir

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #4 alfred

● rinse and repeat...

● prepare the directory structure like before in tmpdir
● swap the mountpoint between tmpdir and the original 

mountpoint in a loop
● when the race is won mds will overwrite one of our files

● that is a hardlink to /etc/sudoers
● how do we control the content?

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #4 alfred

● we need a file that:
● we can smuggle our payload into
● gets recreated

● the most obvious target is VolumeConfiguration.plist
● we can smuggle our payload in as a bogus file exclusion path:

● “\n\nroot ALL=(ALL:ALL) ALL\n\n”
● Spotlight will

● remember this after a remount
● recreate the file if it’s missing

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #4 alfred

https://www.youtube.com/watch?v=YfJdzqqqQFo

https://gergelykalman.com/
https://www.youtube.com/watch?v=YfJdzqqqQFo


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● badmalloc - (CVE-2023-32428) - LPE

● MallocStackLogging(.framework) on macOS / iOS performs insecure file 
writes

● if MallocStack* env vars are set dyld force-loads 
MallocStackLogging into any binary

● this is in macOS since at least 2005 (!) (phrack #63)
● MallocStackLogging writes a file at an attacker-provided path

● we can make any app (== “host”) do this :)

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● to trigger

● MallocStackLogging=1
● MallocStackLoggingDirectory=“whatever”

● MallocStackLogging writes debug files to whatever

● Apple’s not stupid though, so there are defenses

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● defenses:

● whatever is checked with access() first
● open() will be used to create the file:

● won’t overwrite files
● and won’t follow a symlink

● permissions are restricted (no umask() trickery)
● the filename is randomized

● Pretty secure, right?

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

● defenses:
● whatever is checked with access() first

● access() / open() is classic TOCTOU
● we can race it

● open() will be used to create the file:
● won’t overwrite files
● and won’t follow a symlink

● O_NOFOLLOW is used, not O_NOFOLLOW_ANY (!)
● permissions are restricted (no umask() trickery)

● this actually helps us...
● the filename is randomized

● sudo will gobble up any file from /etc/sudoers.d/ :)
● and the random generator was hilariously broken...

Bugs: #5 badmalloc

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● only minimal content control :(

● this stumped me for quite a long time...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● until I realised that:

● every application is affected
● “host” app has no idea about the open()
● open() does not set O_CLOEXEC

● Can we have a suid leak this fd?

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● Yes, crontab!

● crontab is suid and executes our editor

● it does not expect a force-loaded library to open a file
● most programs wouldn’t...

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● to exploit we can call crontab with

● EDITOR=ourscript.py
● MallocStackLogging=1
● MallocStackLoggingDirectory=“whatever”

● we race the access()/open() by swapping whatever with a symlink 
to /etc/sudoers.d/

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

● the race is won in a couple tries

● our EDITOR gets executed:

● with an open fd to a random file under /etc/sudoers.d/
● writes payload: “root ALL=(ALL:ALL) ALL”
● sudo bash

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #5 badmalloc

https://www.youtube.com/watch?v=iNfeo9vkhK0

https://gergelykalman.com/
https://www.youtube.com/watch?v=iNfeo9vkhK0


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

We’re done :)

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Thank you friendly hackers!

● Special thanks to these folks
● Csaba Fitzl (@theevilbit)
● Wojciech Reguła (@_r3ggi)
● Joshua Mason
● Buherator
● Zoltan Padanyi aka max
● Tamas Kozak
● Dora

● among many others

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Thanks Apple!

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Thank you!

Gergely Kalman
@gergely_kalman

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Talk to me if you have questions

Find me in the hallways or Twitter

Gergely Kalman
@gergely_kalman

https://gergelykalman.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

