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Who am I

● my name is Gergely (              ), but you can call me Greg
● lifetime computer nerd:

● hacking, linux, networks, coding (C, Python)
● my job is:

● sysadmin
● programmer
● entrepreneur
● consultant
● independent bug hunter

● my views are mine and mine alone

https://gergelykalman.com/
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Intro

● we will attack file operations on macOS

● this is the condensed version

● more info on my blog:
● https://gergelykalman.com
● or bottom right corner

● two bugs (that were cut) are already up

● the rest will follow
● my twitter: @gergely_kalman

https://gergelykalman.com/
https://gergelykalman.com/
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Why attack file operations?

● they’re simple (to find and exploit)

● ubiquitous and often a result of bad design (→ hard to fix)

● a failed exploit has no downside
● they’re dangerous

● a treasure trove of “classic” LPEs 
● TCC + entitlements made a lot of useless bugs bounty-eligible

● by rugpulling POSIX and 30 years of legacy code
● Nobody is paying attention!

● and that’s good, because I can’t learn all the CFI / PPL / PaC BS

https://gergelykalman.com/
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Terminology

● LPE is user → root
● TCC bypass is user → user with FDA

● FDA → location, camera, contacts, etc...

https://gergelykalman.com/
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How hard are file operations?

● well...

https://gergelykalman.com/
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How hard are file operations?

“Everything is a file”
legacy filesystems

network filesystems

in-band signaling in file operations

symlinks are hard to prevent

race conditions everywhere

POSIX permissions are incredibly complex

. and .. are special

mountpoints can move CWD is unintuitive

no copy() syscall

https://gergelykalman.com/
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How hard are file operations?

“Everything is a file”
legacy filesystems

network filesystems

in-band signaling in file operations

symlinks are hard to prevent

race conditions everywhere

POSIX permissions are incredibly complex

user mounting

reliance on extended attributes

. and .. are special
sandbox_exec

noowners

union mounts

(force) unmount

/.file,  /.vol/

applesingle/appledouble in-band signaling: /..namedfork/rsrc

case-insensitivity

firmlinks

hardlinked directories

user sets fs options

user can change mount options at runtime

mountpoints can move CWD is unintuitive

no copy() syscall

https://gergelykalman.com/
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My bag of dirty tricks

● races: TOCTOUs, rename()s
● reshape the fs graph while in-use
● set CWD to a nonexistent directory
● hardlink a directory, hardlink a symlink
● use inheriting ACLs
● modify xattrs by editing applesingle / appledouble files
● rugpull programs

● by force unmounting
● by moving the mountpoint

https://gergelykalman.com/
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My bag of dirty tricks

● mount (as a user):
● a network volume with 5s latency
● use mount options with noowners, union, etc...
● update the mountpoint or remount in place
● change filesystem o=>d?@i̙̍BC gDEe͆͜� �n̟͞� � c͕͊�	 n̟͞
�
● use filesystems that don’t support xattrs

● corrupt the filesystem image:
● create a directory loop
● hardlink directories at the top level
● make “..” point not to the parent
● create structures that normally would not be possible

https://gergelykalman.com/
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File operations ARE hard

● an unprivileged user can do any/all of this

● So is this the end of the World?

● No, but Apple is in a tough spot…
● without total FS isolation, TCC will always be problematic
● but to be fair: TCC is better than nothing

● Apple doesn’t isolate apps with uids like Android

● IDK why, but if you do → DM me :)

https://gergelykalman.com/
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Our focus

● we will focus on TCC bypass and LPE
● lots of good syscalls, but the best are:

● open() and rename():
● they’re everywhere
● they’re easy to mess up
● they’re useful for LPEs and TCC bypasses

● these are promising, but I don’t have time:
● unlink(), rmdir(), mkdir(): Ubiquitous, but tricky to exploit

● honorable mentions:
● chmod, chown, setxattrs, umask, chflags, clonefile, readlink, link, 

symlink, etc…
● Rare and usually only good for LPEs

https://gergelykalman.com/
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The obstacles

1) file path control

2) file content control

● more control → higher severity

● partial control over each is only good for LPEs
● for TCC bypass you need full path and content control

● if I missed smth → DMs are open

https://gergelykalman.com/
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The allies

● lots of large entitled apps
● sudo
● bad POSIX APIs: O_NOFOLLOW, no symlink prevention, etc...
● atomic rename → renamex_np() / renameatx_np() + RENAME_SWAP
● user mounting

https://gergelykalman.com/
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The allies

● string truncation bugs
● can help you get full path control → common and deadly

● rename bugs:
● rename() always follows symlinks
● rename() can be racy...

https://gergelykalman.com/
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The allies

● rename(“./tmp/a”, “./tmp/b”) is a race-condition
● “./tmp/a” and “./tmp/b” are looked up separately, and CWD is 

implicit
● if I control any non-last path component in CWD I can turn 

this into
● rename(“anything/a”, “somethingelse/b”)

● write a file called “b” anywhere, with fully controlled 
contents :)

● CAVEAT: rename(“./a”, “./b”) does not work, there has to be a 
real, attacker controlled subdirectory :(

https://gergelykalman.com/
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Things I look for

● insecure open():

● bad path, bad/missing flags
● classic access() / open() races
● file “copy”
● file “recreation”

● insecure rename():

● bad path
● dangerous renames

https://gergelykalman.com/
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The bugs

librarian (CVE-2023-38571) - TCC bypass - check blog

unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass

2)sqlol (CVE-2023-32422) - TCC bypass

3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE

5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/
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Cut bugs

● librarian - TCC bypass
● fully controlled rename() in Music

● unnamed sbx escape - app sbx escape
● sandbox escape by preventing quarantine xattr placement using 

devfs and symlinks

https://gergelykalman.com/
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The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE
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Bugs: #1 Lateralus

● lateralus (CVE-2023-32407) - TCC bypass

● insecure file write in the Metal library

● MTL_DUMP_PIPELINES_TO_JSON_FILE=”path/name”
● Foundation's NSFileManager createFileAtPath is used:

● open()s new tempfile: “path/.dat.nosyncXXXX.XXXXXX” (X is 
random)

● writes the contents
● calls rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

● dangerous rename with full control over the path

https://gergelykalman.com/
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Bugs: #1 Lateralus

● how do we get content control?

● impossible if we use “~/Library/Application 
Support/com.apple.TCC/” directly

● but we can use a controlled location

● wait for the temp file and open() it
● race the rename()

● in a loop: atomically swap the directory with a symlink
● → full control over path and contents

https://gergelykalman.com/
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Bugs: #1 Lateralus

https://www.youtube.com/watch?v=JPrCwUFYPkw

https://gergelykalman.com/
https://www.youtube.com/watch?v=JPrCwUFYPkw
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The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/
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Bugs: #2 sqlol

● sqlol (CVE-2023-32422) - TCC bypass
● insecure file write in libsqlite (only on macOS)

● debug functionality in production (compiled with SQLITE_ENABLE_SQLLOG)
● SQLITE_SQLLOG_DIR="whatever" means:

● copy the opened DBs to whatever
● write a query log and index file as well

● files are created with open(), which:
● follows symlinks
● overwrites files

● a trivial infoleak, but I want to overwrite TCC.db

https://gergelykalman.com/
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Bugs: #2 sqlol

● controlling the filename: use a symlink

● controlling content is tricky

● I can overwrite files, but only with debug files: the DB, the 
statement log, the index

● this stumped me a bit...

https://gergelykalman.com/
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Bugs: #2 sqlol

● until I realised:

● a sqlite DB can have multiple tables in it
● TCC.db is a sqlite DB

● we can “smuggle” the TCC.db’s tables into any other sqlite DB:

● Music has FDA, and a writable DB (Cache.db)
● I can add the TCC tables to it
● Cache.db can now replace and function as TCC.db :)
● we don’t even need to race

https://gergelykalman.com/
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Bugs: #2 sqlol

https://www.youtube.com/watch?v=rfGcd0YrbTM

https://gergelykalman.com/
https://www.youtube.com/watch?v=rfGcd0YrbTM
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The bugs
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2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
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Bugs: #3 batsignal

● batsignal (no CVE) – LPE

● collision with Joshua Mason’s CVE-2022-32801

● + a couple bypasses
● no credit, just a small bounty…

● Spotlight performs file operations on user-mounted volumes

● daemons mds and mds_stores run as root (mds even has FDA)
● they use a SIP-protected directory on the volume:

● “/.Spotlight-V100”

https://gergelykalman.com/
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● v1: Exploiting Spotlight for the first time

Bugs: #3 batsignal

https://gergelykalman.com/
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Bugs: #3 batsignal

● umount the disk and edit it offline

● changing a directory name is easy in HFS+ :)
● buf.replace(b’\x31\x00\x30\x00\x30\x00’, b'\x39\x00\x30\x00\x30\x00’)

● .Spotlight-V100 → .Spotlight-V900
● HFS+ is fine with this

● Spotlight won’t care

● SIP won’t notice

https://gergelykalman.com/
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Bugs: #3 batsignal

● (one of the) bug(s):
● Spotlight writes cache files insecurely with open()

● to exploit:
● symlink a file in the Caches directory

● Spotlight will truncate and overwrite existing files
● the cache file has:

● attacker-controlled content
● a known filename → X.txt, where X is the inode number

● the fix: Spotlight no longer likes symlinks :(

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● v2: Exploiting Spotlight for the second time

https://gergelykalman.com/
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Bugs: #3 batsignal

● the protection is still a regex engine

● it’s not filesystem-aware
● no idea about mountpoints, symlinks, etc…

● hardlinks are sort of like symlinks

● if they’re on the same volume
● Can we “merge” volumes?

● macOS does allow crazy things...

https://gergelykalman.com/
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Bugs: #3 batsignal

● Yes, we can use unions
● these complicate EVERYTHING

● but not for us :)
● union 101:

● two volumes mounted over each other
● top and bottom
● lookups start in top
● fall back to bottom

● they can also nest
● nest

● nest
● nest

https://gergelykalman.com/
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Bugs: #3 batsignal

● to exploit:

● mirror Spotlight’s directory structure on the system disk 
(bottom)

● mount the volume over it with union (top)
● delete the target file from top, so it’s used from bottom

● where it’s hardlinked to /etc/sudoers
● This is how you symlink without symlinks!

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Bugs: #3 batsignal

● the fix: Apple now disallows union mounts using SIP :(

● At least I got a bounty. After more than a year. Still no credit though

● conclusion:

● allowing users to mount disk images is crazy:
● attacker has all the leverage

● Apple does pay bounties
● but it’s complicated...

https://gergelykalman.com/
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Bugs: #3 batsignal v1

https://www.youtube.com/watch?v=Xvb9peOSys0

https://gergelykalman.com/
https://www.youtube.com/watch?v=Xvb9peOSys0
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The bugs

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/
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Bugs: #4 alfred

● alfred (CVE-2023-40443) - LPE

● really it’s batsignal v3

● to recap:

● Spotlight does insecure writes on user-provided volumes
● now we can’t use symlinks, or union-mounts :(

● What now?

https://gergelykalman.com/
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Bugs: #4 alfred

● move the mountpoint :)

● by moving the parent
● rugpull mds → write to system volume

● Apple did a good job of restricting mds, with two exceptions:
● (regex #"^/private/var/folders/[^/]+/[^/]+/C/com.apple.metadata.mdworker($|/)")

● (regex #"^/private/var/folders/[^/]+/[^/]+/T/com.apple.metadata.mdworker($|/)")

● “/var/folders/RANDOM/RANDOM/T/com.apple.metadata.mdworker/”
● we’ll call this ^^^ tmpdir

https://gergelykalman.com/
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Bugs: #4 alfred

● rinse and repeat...

● prepare the directory structure like before in tmpdir
● swap the mountpoint between tmpdir and the original 

mountpoint in a loop
● when the race is won mds will overwrite one of our files

● that is a hardlink to /etc/sudoers
● how do we control the content?

https://gergelykalman.com/
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Bugs: #4 alfred

● we need a file that:
● we can smuggle our payload into
● gets recreated

● the most obvious target is VolumeConfiguration.plist
● we can smuggle our payload in as a bogus file exclusion path:

● “\n\nroot ALL=(ALL:ALL) ALL\n\n”
● Spotlight will

● remember this after a remount
● recreate the file if it’s missing

https://gergelykalman.com/
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Bugs: #4 alfred

https://www.youtube.com/watch?v=YfJdzqqqQFo

https://gergelykalman.com/
https://www.youtube.com/watch?v=YfJdzqqqQFo
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The bugs
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Bugs: #5 badmalloc

● badmalloc - (CVE-2023-32428) - LPE

● MallocStackLogging(.framework) on macOS / iOS performs insecure file 
writes

● if MallocStack* env vars are set dyld force-loads 
MallocStackLogging into any binary

● this is in macOS since at least 2005 (!) (phrack #63)
● MallocStackLogging writes a file at an attacker-provided path

● we can make any app (== “host”) do this :)

https://gergelykalman.com/
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Bugs: #5 badmalloc

● to trigger

● MallocStackLogging=1
● MallocStackLoggingDirectory=“whatever”

● MallocStackLogging writes debug files to whatever

● Apple’s not stupid though, so there are defenses

https://gergelykalman.com/
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Bugs: #5 badmalloc

● defenses:

● whatever is checked with access() first
● open() will be used to create the file:

● won’t overwrite files
● and won’t follow a symlink

● permissions are restricted (no umask() trickery)
● the filename is randomized

● Pretty secure, right?

https://gergelykalman.com/
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● defenses:
● whatever is checked with access() first

● access() / open() is classic TOCTOU
● we can race it

● open() will be used to create the file:
● won’t overwrite files
● and won’t follow a symlink

● O_NOFOLLOW is used, not O_NOFOLLOW_ANY (!)
● permissions are restricted (no umask() trickery)

● this actually helps us...
● the filename is randomized

● sudo will gobble up any file from /etc/sudoers.d/ :)
● and the random generator was hilariously broken...

Bugs: #5 badmalloc

https://gergelykalman.com/
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Bugs: #5 badmalloc

● only minimal content control :(

● this stumped me for quite a long time...

https://gergelykalman.com/
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Bugs: #5 badmalloc

● until I realised that:

● every application is affected
● “host” app has no idea about the open()
● open() does not set O_CLOEXEC

● Can we have a suid leak this fd?

https://gergelykalman.com/
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Bugs: #5 badmalloc

● Yes, crontab!

● crontab is suid and executes our editor

● it does not expect a force-loaded library to open a file
● most programs wouldn’t...

https://gergelykalman.com/
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Bugs: #5 badmalloc

● to exploit we can call crontab with

● EDITOR=ourscript.py
● MallocStackLogging=1
● MallocStackLoggingDirectory=“whatever”

● we race the access()/open() by swapping whatever with a symlink 
to /etc/sudoers.d/

https://gergelykalman.com/
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Bugs: #5 badmalloc

● the race is won in a couple tries

● our EDITOR gets executed:

● with an open fd to a random file under /etc/sudoers.d/
● writes payload: “root ALL=(ALL:ALL) ALL”
● sudo bash

https://gergelykalman.com/
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Bugs: #5 badmalloc

https://www.youtube.com/watch?v=iNfeo9vkhK0

https://gergelykalman.com/
https://www.youtube.com/watch?v=iNfeo9vkhK0


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

We’re done :)

librarian (CVE-2023-38571) - TCC bypass  - check 
blog
unnamed app sandbox escape (CVE-2023-32364) - app 
sandbox escape - check blog

1)lateralus (CVE-2023-32407) - TCC bypass
2)sqlol (CVE-2023-32422) - TCC bypass
3)batsignal (no CVE) - LPE
4)alfred (CVE-2023-40443) - LPE
5)badmalloc - (CVE-2023-32428) - LPE

https://gergelykalman.com/
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Thank you friendly hackers!

● Special thanks to these folks
● Csaba Fitzl (@theevilbit)
● Wojciech Reguła (@_r3ggi)
● Joshua Mason
● Buherator
● Zoltan Padanyi aka max
● Tamas Kozak
● Dora

● among many others

https://gergelykalman.com/
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Thanks Apple!

https://gergelykalman.com/


 Unexpected, Unreasonable, Unfixable: Filesystem Attacks on macOS - Gergely Kalman
@gergely_kalman, https://gergelykalman.com, OBTS v6, 2023

Thank you!

Gergely Kalman
@gergely_kalman

https://gergelykalman.com/
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Talk to me if you have questions

Find me in the hallways or Twitter

Gergely Kalman
@gergely_kalman

https://gergelykalman.com/
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