
The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The forgotten art of filesytem magic

Gergely Kalman
Alligatorcon, 2024

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Who am I

● my name is Gergely (call me Greg)

● did a bunch of stuff

● no one cares
● currently

● Full Time hunter in the Apple Security Bounty (ASB)
● I have no affiliation with anyone

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Intro

● we will attack file operations and filesystems

● more info:

● bottom right corner
● https://gergelykalman.com →
● or my OBTS v6 presentation

● twitter: @gergely_kalman

https://gergelykalman.com/
https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

A “quick” riddle

● on an HFS+ volume on macOS

● in a directory called /Volume/ours owned by the attacker user

● we can trigger a file creation

● by a system daemon running as root
● /Volume/ours/secret can be created as root:wheel, perms “rwx------”

● a POSIX “read” extended ACL will be created for attacker

● and an extended attribute called “com.apple.quarantine” will be
placed by the system

● content will be written to the file by the daemon
● Question: can attacker read the contents of “secret”?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

If you think “How the *@!# should I know?”

You are not alone

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The question can’t be answered.

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Why not?

● long answer:

● https://gergelykalman.com/the-missing-guide-to-the-security-of-files
ystems-and-file-apis.html

https://gergelykalman.com/
https://gergelykalman.com/the-missing-guide-to-the-security-of-filesystems-and-file-apis.html
https://gergelykalman.com/the-missing-guide-to-the-security-of-filesystems-and-file-apis.html

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

The “short” answer

● short answer:

● users can mount
● mountpoints can move
● permissions are insanely complicated
● file operations are racy
● tons of magic at every level

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

File ops are shockingly hard

● there are many layers that take care of access control

● their possible interactions are often exponential

● lots of magic

● OS magic: SIP → policies are hidden

● FS magic: FS attributes → can override decisions

● path resolution is really unintuitive

● the VFS and FS drivers can have surprising bugs/features

● filesystems are racy

● pretty much everything can be turned into a race condition

● provided that you have control - this is very important

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Lesson learned

● it’s impossible to secure file ops in attacker-controlled locations
● ie: if attacker controls a path fully or partially

● one path component might be enough if you can symlink
● The only secure way to handle file operations is to do it in a

completely separate silo
● not always feasible

● think /tmp/, IPC sockets, etc…

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Good bugs are hard to find

● it’s rare to find easy FS bugs, since they are taken seriously
● ex: arbitrary file rename()
● ex: arbitrary file write
● ex: arbitrary chmod()/chown()

● these are obviously bad

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

“Garbage” bugs are everywhere

● devs don’t care about “garbage” bugs
● how bad is an arbitrary unlink()?
● if a bug can’t be exploited, it won’t get fixed

● and “can be exploited” usually means:
● is there a widely-known (easy) way to exploitation?

● NO → not a security issue
● from this it follows that:

● bugs without widely-known security implications won’t get patched

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Let me say that again

Bugs without widely-known security implications
won’t get patched.

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Let’s go dumpster diving!

● every system is full of bugs that were deemed unexploitable
● “deemed” is the key here
● you win if you know more than the devs

● which is not difficult since this is pretty obscure stuff

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

One of my “garbage” bugs

● root daemon in /.../test/
● creates file “./a” without following any symlinks
● calls rename(“./a”, “./b”)
● attacker owns /.../test

● is this secure?

● show of hands

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

One of my “garbage” bugs

● is this secure? - NO!
● this can be used to rename a file from “a” to “b”

● but that’s pretty useless
● this is a typical “garbage” bug

● is there more to this?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● is there more to this? – YES!
● don’t let the “.” deceive you:

● rename(“./a”, “./b”) → rename(“/tmp/test/a”, “/tmp/test/b”)
● in rename(src, dst) src and dst are looked up separately

● the path lookup doesn’t (can’t) know that the files are in the same
directory

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● rename(“/tmp/test/a”, “/tmp/test/b”) will run:
● GET_PATH(“/tmp/test/a”)
● GET_PATH(“/tmp/test/b”)

● this is a race condition!
● if I can switch out “test” to be a symlink

● after the src lookup
● but before the dst lookup

● I can end up moving the file to anywhere/b
● write a file called “b” anywhere, with arbitrary contents...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● This works both on macOS and Linux
● I didn’t know about this
● nobody I asked did either

● So this just became really interesting

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● How did I find it?
● I was browsing the xnu (macOS) kernel source for unrelated reasons

and some weird logic stood out to me
● But this is the exception

● Usually I just write dumb tests

● I write code that tries hard to do obviously stupid things
● mimic the conditions the best I can

● 5% of my dumb tests succeed in doing the obviously dumb thing
● so I either learn something new
● or I find a really cool new trick

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Back to my “garbage” bug

● in this case, I have uncovered something really cool
● this is a brand new vector to exploiting rename()s

● it’s everywhere
● and it can’t be fixed easily

● POSIX is not at fault
● rename() works as intended
● so the real culprit is the userspace program

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Back to my “garbage” bug

● it shouldn’t have been writing to a location where others can write
● which is easy to say now
● but until I investigated it I also thought it was fine:

● fishy, but seems okay
● symlinks weren’t followed in open()
● I had no control over the destination file path or file name
● at best this would be an overwrite of the fixed file path

● which was pretty useless
● probably this is what the developers thought

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Back to my “garbage” bug

● in the end I exploited the bug with sudo
● dumped a file in /etc/sudoers.d/

● sudo is great

● filename doesn’t matter in /etc/sudoers.d/
● only permissions are checked
● sudo is okay with binary garbage → partial content control is enough

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

This is cutting edge in 2024

Which is absolutely insane
POSIX has been around for 40 years...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The bugs

1)librarian (CVE-2023-38571) - TCC bypass

2)lateralus (CVE-2023-32407) - TCC bypass

3)sqlol (CVE-2023-32422) - TCC bypass

4)batsignal (no CVE) - LPE

5)alfred (CVE-2023-40443) - LPE

6)badmalloc (CVE-2023-32428) - LPE

7)jetson (CVE-2023-41986) - TCC bypass

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

● rename() bug in Music on macOS

● any file dumped here:
● ~/Music/Music/Media.localized/Automatically Add to Music.localized/myfile.mp3

● will be moved here:
● "~/Music/Music/Media.localized/Automatically Add to Music.localized/Not

Added.localized/2023-09-25 11.06.28/myfile.mp3

● a best-case rename() bug
● dst filename is fully controlled
● src is fully controlled

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

● for a successful exploit:

● we have to replace the date directory with a symlink
● a really easy race, no tricks necessary

● what did we get?

● Music (at that time) had FDA access
● so we could use this to overwrite the user’s TCC.db

● which grants us access to all TCC-protected data
● aka a “FULL TCC bypass”

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

● a FULL TCC bypass on macOS is worth $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● insecure file write in the Metal library

● used by Music (among others)
● triggered from an env var:

● MTL_DUMP_PIPELINES_TO_JSON_FILE = ”path/name”
● tempfile creation + rename

● using createFileAtPath

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● createFileAtPath:

● in Foundation framework’s NSFileManager

● this is THE core Apple framework everyone relies on
● so it should be secure, right?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● createFileAtPath(“path/name”, ...):

● open() creates temp file:

“path/.dat.nosyncXXXX.XXXXXX” (X is random)
● write()s the contents
● calls rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

● what do you think: how secure is this?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

this is an arbitrary file overwrite primitive

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

this is an arbitrary file overwrite primitive
(in a core system framework)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● at first glance content control seems impossible

MTL_DUMP_PIPELINES_TO_JSON_FILE = ”path/name”

open(“path/.dat.nosyncXXXX.XXXXXX”, ...)

rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● but we know rename() is racy:

● we can have the tempfile dumped anywhere we can write
● then race the “in-place” rename() to change the dst path

MTL_DUMP_PIPELINES_TO_JSON_FILE = ”path/name”

open(“path/.dat.nosyncXXXX.XXXXXX”, ...)

rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

● did you get that?

● there are three path lookups:

● 1) for open()
● 2) for src in rename()
● 3) for dst in rename()

● we need to win two races:

● between open() and rename() to switch the temp file
● between src and dst in rename() to switch the path dir

Bugs: #2 Lateralus

open(“path/.dat.nosyncXXXX.XXXXXX”, ...)

rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● what do we get?

● full control over path and contents
● if rename() worked as most people assume, this won’t be too bad

● we could create a new file anywhere, without content control
● typical “informational” garbage bug

● instead of that

● I overwrote TCC.db for another $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● libsqlite was compiled with debug ON on macOS

● SQLITE_SQLLOG_DIR = "whatever" means:
● copy every opened sqlite DB to “whatever”
● and write a query log and index file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● libsqlite was compiled with debug ON on macOS

● SQLITE_SQLLOG_DIR = "whatever" means:
● copy every opened sqlite DB to “whatever”
● and write a query log and index file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● libsqlite is used by apps with TCC-bypass privileges

● Music uses it (among many others)
● already a horrible infoleak

● but can we do even more?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● good:

● open() follows all symlinks
● open() overwrites existing files

● bad:

● lack of content control
● I can overwrite files, but only with:

● sqlite DB, statement log, index file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● the big ideas:

● I can write to some of the source DBs
● sqlite supports multiple tables
● TCC.db is an sqlite DB

TCC.db Cache.db Cache.db

merge copy

TCC.db

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● sqlite “table smuggling”:

● put valid TCC.db tables into Music’s Cache.db
● upon opening it, libsqlite will make a copy
● with a predictable name, following symlinks

● → overwrite the real TCC.db with one that has our data
● we don’t even need to race

● this cost Apple yet another $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

For my next trick...

● let’s stop bullying Music for a second

● and see if we can get root

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal

● Spotlight performs file operations on user-mounted volumes

● a truly horrendous idea...

● two root daemons: mds, mds_stores
● they operate in a SIP-protected directory on the volume:

● “/mntpoint/.Spotlight-V100/”
● SIP will use this as a regular expression to block access

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● umount the disk and edit it offline

● changing a directory name is easy in HFS+ :)
● buf.replace(b’\x31\x00\x30\x00\x30\x00’, b'\x39\x00\x30\x00\x30\x00’)

● .Spotlight-V100 → .Spotlight-V900
● this allows me to booby trap this directory

.Spotlight-V100

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● one of the (many) bugs:

● Spotlight writes cache files with open()
● follows symlinks, overwrites files with truncation

● the cache file has:
● attacker-controlled content
● a known filename → X.tmp, where X is the inode number

payload.pdf
junkjunkjunkjunkjunkjunkjunkjunk

junkjunkjunkjunkjunkjunkjunkjunk

ALL ALL=(ALL) NOPASSWD: ALL

junkjunkjunkjunkjunkjunkjunkjunk

junkjunkjunkjunkjunkjunkjunkjunk

file write

X.tmp

ALL ALL=(ALL) NOPASSWD: ALL

X.tmp

ALL ALL=(ALL) NOPASSWD: ALL

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● to exploit:
● symlink the desired cache file to /etc/sudoers
● place a pdf with arbitrary text on the volume

● content from the pdf will be written to /etc/sudoers

payload.pdf
junkjunkjunkjunkjunkjunkjunkjunk

junkjunkjunkjunkjunkjunkjunkjunk

ALL ALL=(ALL) NOPASSWD: ALL

junkjunkjunkjunkjunkjunkjunkjunk

junkjunkjunkjunkjunkjunkjunkjunk

/etc/sudoers

ALL ALL=(ALL) NOPASSWD: ALL
file write

X.tmp

ALL ALL=(ALL) NOPASSWD: ALL

X.tmp

symlink

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● bounty: $0 (collision)
● the fix: Spotlight no longer likes symlinks :(

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● we can’t use symlinks now :(

● the /.Spotlight-V100 protection is still a regex match

● it’s not filesystem-aware
● no idea about mountpoints, symlinks, etc…

● hardlinks are sort of like symlinks

● if they’re on the same volume
● can we “merge” two different volumes somehow?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● Yes: we can use unions!

● union 101:

● top and bottom filesystems
● mounted over each other
● lookups start in top
● if name is missing

● fall back to bottom

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● unions:

A
B
C

D
E
F

A
B
C
D
E
F

union

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● unions:

A
B
C

A
B
C

A
B
C

union

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● unions:

A
B
C

A
B
C

A
B
C

A
B
C

union unlink(“B”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● the file write bug is exploitable again

● mirror Spotlight’s directories on the system disk (bottom)
● mount the volume over it with union (top)
● delete the target file from top, so it’s used from bottom
● where it’s hardlinked to /etc/sudoers

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

This is how you symlink without symlinks!

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● Apple finally paid me $17,000

● after more than a year, without any credit
● Lessons learned:

● Allowing users to mount their own images is absolutely insane
● Apple does pay for bugs

● the fix: Apple disallows unions for Spotlight

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● alfred is actually batsignal v3

● to recap:

● Spotlight does insecure writes on user-provided volumes
● we can’t use symlinks
● we can’t use union-mounts :(

● Surely we are done, right?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● Nope, we can just move the mountpoint

● rugpull mds → write to system volume

● Apple did a good job of restricting mds, except:
● (regex #"^/private/var/folders/[^/]+/[^/]+/C/com.apple.metadata.mdworker($|/)")

● (regex #"^/private/var/folders/[^/]+/[^/]+/T/com.apple.metadata.mdworker($|/)")

● “/var/folders/RANDOM/RANDOM/T/com.apple.metadata.mdworker/”
● doesn’t exist, but can be created by us
● is not protected by SIP
● we’ll call this tmpdir

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● to exploit this:

● prepare the Spotlight directories in tmpdir
● create a hardlink to /etc/sudoers in tmpdir
● swap the mountpoint with tmpdir in a loop

● when the race is won:

● mds will operate under tmpdir
● this is allowed in the policy

● but how do we control the content?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● many bugs to pick from

● so I looked for a file create that

● we can smuggle our payload into
● recreates a file

● didn’t have to look too long:

● VolumeConfiguration.plist contains configuration options for
Spotlight

● has user-provided file exclusion paths
● gets re-created with the contents it remembered

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● we can partially control data now

● which works well for sudo
● reads /etc/sudoers.d/*
● parses what it can
● ignores everything else

● with a valid sudo entry we escalate to root

● Apple paid $22,500 for this one

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● an at least 20 year old bug

● in macOS since at least 2005 (phrack #63)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● if the dynamic loader (dyld) sees MallocStack* env vars:

● it force-loads MallocStackLogging.framework

● MallocStackLoggingDirectory=pwned:

● framework writes a debug file in pwned
● this happens in ALL processes, including suids

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● if the dynamic loader (dyld) sees MallocStack* env vars:

● it force-loads MallocStackLogging.framework

● MallocStackLoggingDirectory=pwned:

● framework writes a debug file in pwned
● this happens in ALL processes, including suids

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● defenses:

● 1. whatever is checked with access() first
● 2. open() will be used to create the file:

● won’t overwrite files
● and won’t follow symlinks

● 3. permissions are restricted (no umask() trickery)
● 4. the filename is randomized

● Pretty secure, right?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

● 1. whatever is checked with access() first
● access() / open() is classic TOCTOU

● 2. open() will be used to create the file:
● won’t overwrite files
● and won’t follow a symlink

● O_NOFOLLOW is used, not O_NOFOLLOW_ANY (!)
● 3. permissions are restricted (no umask() trickery)

● this actually helps
● 4. the filename is randomized

● sudo doesn’t care

BONUS: the random generator was hilariously broken...

Bugs: #6 badmalloc

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● one problem remains...

● we have negligible content control :(

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● however:

● every application is affected
● “host” app has no idea about the open()
● open() does not set O_CLOEXEC

● can we have a suid leak this fd?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● Of course!

● crontab is suid and executes our $EDITOR

● it does not expect a force-loaded library to open a file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● Of course!

● crontab is suid and executes our $EDITOR

● it does not expect a force-loaded library to open a file
● why would it? that’d be F@#%ING INSANE!

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● the exploit is trivial

● one access() / open() race, easy to win

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● this cost Apple another $22,500

● again, a (minimum) 20 year old bug

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● a bug in the handling of JetPack files

● JetPack is a custom Apple archive format
● took me 30min to reverse
● container of containers
● supports tar, brotli, etc...
● supports encryption

● turned off by default...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● archive can be tampered with after download

● files are extracted with open() with O_NOFOLLOW and O_EXCL

● to a directory I can write to

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● archive can be tampered with after download

● files are extracted with open() with O_NOFOLLOW and O_EXCL

● to a directory I can write to

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● I can replace the archive with my own!

● include a malicious TCC.db 100 times :)

● yes, you can include the same file 100 times in a tar

→ 100x chance to win the open() race
● full path and content control

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● but what about O_EXCL?

● JetPack is friendly and even unlink()s the file if it exists
● lesson:

● it’s not obvious whether any single file operation is secure
● because they depend on each other

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● anyway, I abused Music again

● to gain FDA

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● The fix: Music FINALLY no longer has FDA

● bounty: $0

● Apple said this is not eligible
● they were already working on turning on encryption...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● but they changed their minds!

● no idea why
● bounty: $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

Video will come out with the blogpost

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Phew

● I hope you’re still awake... and that you learned something

● in case you are wondering:

total was $153,500

● so far...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

This is only the start

● for more:

● https://gergelykalman.com
● “The missing guide to the security of filesystems and file APIs”

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

TO
CONTINUE

THIS
RESEARCH

I WANT YOU

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Thank you!

Gergely Kalman
@gergely_kalman

https://gergelykalman.com/

