
The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The forgotten art of filesytem magic

Gergely Kalman
Alligatorcon, 2024

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Who am I

● my name is Gergely (call me Greg)

● did a bunch of stuff

● no one cares
● currently

● Full Time hunter in the Apple Security Bounty (ASB)
● I have no affiliation with anyone

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Intro

● we will attack file operations and filesystems

● more info:

● bottom right corner
● https://gergelykalman.com →
● or my OBTS v6 presentation

● twitter: @gergely_kalman

https://gergelykalman.com/
https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

A “quick” riddle

● on an HFS+ volume on macOS

● in a directory called /Volume/ours owned by the attacker user

● we can trigger a file creation

● by a system daemon running as root
● /Volume/ours/secret can be created as root:wheel, perms “rwx------”

● a POSIX “read” extended ACL will be created for attacker

● and an extended attribute called “com.apple.quarantine” will be
placed by the system

● content will be written to the file by the daemon
● Question: can attacker read the contents of “secret”?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

If you think “How the *@!# should I know?”

You are not alone

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The question can’t be answered.

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Why not?

● long answer:

● https://gergelykalman.com/the-missing-guide-to-the-security-of-files
ystems-and-file-apis.html

https://gergelykalman.com/
https://gergelykalman.com/the-missing-guide-to-the-security-of-filesystems-and-file-apis.html
https://gergelykalman.com/the-missing-guide-to-the-security-of-filesystems-and-file-apis.html

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

The “short” answer

● short answer:

● users can mount
● mountpoints can move
● permissions are insanely complicated
● file operations are racy
● tons of magic at every level

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

File ops are shockingly hard

● there are many layers that take care of access control
● their possible interactions are often exponential

● lots of magic
● OS magic: SIP → policies are hidden
● FS magic: FS attributes → can override decisions

● path resolution is really unintuitive
● the VFS and FS drivers can have surprising bugs/features
● filesystems are racy

● pretty much everything can be turned into a race condition
● provided that you have control - this is very important

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Lesson learned

● it’s impossible to secure file ops in attacker-controlled locations
● ie: if attacker controls a path fully or partially

● one path component might be enough if you can symlink
● The only secure way to handle file operations is to do it in a

completely separate silo
● not always feasible

● think /tmp/, IPC sockets, etc…

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Good bugs are hard to find

● it’s rare to find easy FS bugs, since they are taken seriously
● ex: arbitrary file rename()
● ex: arbitrary file write
● ex: arbitrary chmod()/chown()

● these are obviously bad

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

“Garbage” bugs are everywhere

● devs don’t care about “garbage” bugs
● how bad is an arbitrary unlink()?
● if a bug can’t be exploited, it won’t get fixed

● and “can be exploited” usually means:
● is there a widely-known (easy) way to exploitation?

● NO → not a security issue
● from this it follows that:

● bugs without widely-known security implications won’t get patched

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Let me say that again

Bugs without widely-known security implications
won’t get patched.

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Let’s go dumpster diving!

● every system is full of bugs that were deemed unexploitable
● “deemed” is the key here
● you win if you know more than the devs

● which is not difficult since this is pretty obscure stuff

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

One of my “garbage” bugs

● root daemon in /.../test/
● creates file in tmp dir: “./tmp/a” without following any symlinks
● calls rename(“./tmp/a”, “./tmp/b”)
● attacker owns /.../test

● is this secure?

● show of hands

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

One of my “garbage” bugs

● is this secure? - NO!
● this can be used to rename a file from “./tmp/a” to “./tmp/b”

● but that’s pretty useless
● this is a typical “garbage” bug

● is there more to this?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● is there more to this? – YES!
● don’t let the “.” deceive you:

● rename(“./tmp/a”, “./tmp/b”) → rename(“/tmp/test/tmp/a”, “/tmp/test/tmp/b”)

● in rename(src, dst) src and dst are looked up separately

● the path lookup doesn’t (can’t) know that the files are in the same
directory

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● rename(“/tmp/test/tmp/a”, “/tmp/test/tmp/b”)
● will resolve /tmp/test/tmp twice

● this is a race condition!
● if I can switch out “tmp” to be a symlink

● after the src lookup
● but before the dst lookup

● I can end up moving the file to anywhere/b
● write a file called “b” anywhere, with arbitrary contents...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● This works both on macOS and Linux
● I didn’t know about this
● nobody I asked did either

● So this just became really interesting

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The rename() trick

● How did I find it?
● I was browsing the xnu (macOS) kernel source for unrelated reasons

and some weird logic stood out to me
● But this is the exception

● Usually I just write dumb tests

● I write code that tries hard to do obviously stupid things
● mimic the conditions the best I can

● 5% of my dumb tests succeed in doing the obviously dumb thing
● so I either learn something new
● or I find a really cool new trick

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Back to my “garbage” bug

● in this case, I have uncovered something really cool
● this is a brand new vector to exploiting rename()s

● it’s everywhere
● and it can’t be fixed easily

● POSIX is not at fault
● rename() works as intended
● so the real culprit is the userspace program

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Back to my “garbage” bug

● it shouldn’t have been writing to a location where others can write
● which is easy to say now
● but until I investigated it I also thought it was fine:

● fishy, but seems okay
● symlinks weren’t followed in open()
● I had no control over the destination file path or file name
● at best this would be an overwrite of the fixed file path

● which was pretty useless
● probably this is what the developers thought

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Back to my “garbage” bug

● in the end I exploited the bug with sudo
● dumped a file in /etc/sudoers.d/

● sudo is great

● filename doesn’t matter in /etc/sudoers.d/
● only permissions are checked
● sudo is okay with binary garbage → partial content control is enough

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

This is cutting edge in 2024

Which is absolutely insane
POSIX has been around for 40 years...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

The bugs

1)librarian (CVE-2023-38571) - TCC bypass

2)lateralus (CVE-2023-32407) - TCC bypass

3)sqlol (CVE-2023-32422) - TCC bypass

4)batsignal (no CVE) - LPE

5)alfred (CVE-2023-40443) - LPE

6)badmalloc (CVE-2023-32428) - LPE

7)jetson (CVE-2023-41986) - TCC bypass

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

● rename() bug in Music on macOS

● any file dumped here:
● ~/Music/Music/Media.localized/Automatically Add to Music.localized/myfile.mp3

● will be moved here:
● "~/Music/Music/Media.localized/Automatically Add to Music.localized/Not

Added.localized/2023-09-25 11.06.28/myfile.mp3

● a best-case rename() bug
● dst filename is fully controlled
● src is fully controlled

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

● for a successful exploit:

● we have to replace the date directory with a symlink
● a really easy race, no tricks necessary

● what did we get?

● Music (at that time) had FDA access
● so we could use this to overwrite the user’s TCC.db

● which grants us access to all TCC-protected data
● aka a “FULL TCC bypass”

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #1 Librarian

● a FULL TCC bypass on macOS is worth $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● insecure file write in the Metal library

● used by Music (among others)
● triggered from an env var:

● MTL_DUMP_PIPELINES_TO_JSON_FILE = ”path/name”
● tempfile creation + rename

● using createFileAtPath

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● createFileAtPath:

● in Foundation framework’s NSFileManager

● this is THE core Apple framework everyone relies on
● so it should be secure, right?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● createFileAtPath(“path/name”, ...):

● open() creates temp file:

“path/.dat.nosyncXXXX.XXXXXX” (X is random)
● write()s the contents
● calls rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

● what do you think: how secure is this?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

this is an arbitrary file overwrite primitive

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

this is an arbitrary file overwrite primitive
(in a core system framework)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● at first glance content control seems impossible

MTL_DUMP_PIPELINES_TO_JSON_FILE = ”path/name”

open(“path/.dat.nosyncXXXX.XXXXXX”, ...)

rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● but we know rename() is racy:

● we can have the tempfile dumped anywhere we can write
● then race the “in-place” rename() to change the dst path

MTL_DUMP_PIPELINES_TO_JSON_FILE = ”path/name”

open(“path/.dat.nosyncXXXX.XXXXXX”, ...)

rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

● did you get that?

● there are three path lookups:

● 1) for open()
● 2) for src in rename()
● 3) for dst in rename()

● we need to win two races:

● between open() and rename() to switch the temp file
● between src and dst in rename() to switch the path dir

Bugs: #2 Lateralus

open(“path/.dat.nosyncXXXX.XXXXXX”, ...)

rename(“path/.dat.nosyncXXXX.XXXXXX”, “path/name”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

● what do we get?

● full control over path and contents
● if rename() worked as most people assume, this won’t be too bad

● we could create a new file anywhere, without content control
● typical “informational” garbage bug

● instead of that

● I overwrote TCC.db for another $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #2 Lateralus

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● libsqlite was compiled with debug ON on macOS

● SQLITE_SQLLOG_DIR = "whatever" means:
● copy every opened sqlite DB to “whatever”
● and write a query log and index file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● libsqlite was compiled with debug ON on macOS

● SQLITE_SQLLOG_DIR = "whatever" means:
● copy every opened sqlite DB to “whatever”
● and write a query log and index file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● libsqlite is used by apps with TCC-bypass privileges

● Music uses it (among many others)
● already a horrible infoleak

● but can we do even more?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● good:

● open() follows all symlinks
● open() overwrites existing files

● bad:

● lack of content control
● I can overwrite files, but only with:

● sqlite DB, statement log, index file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● the big ideas:

● I can write to some of the source DBs
● sqlite supports multiple tables
● TCC.db is an sqlite DB

TCC.db Cache.db Cache.db

merge copy

TCC.db

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

● sqlite “table smuggling”:

● put valid TCC.db tables into Music’s Cache.db
● upon opening it, libsqlite will make a copy
● with a predictable name, following symlinks

● → overwrite the real TCC.db with one that has our data
● we don’t even need to race

● this cost Apple yet another $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #3 sqlol

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

For my next trick...

● let’s stop bullying Music for a second

● and see if we can get root

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal

● Spotlight performs file operations on user-mounted volumes

● a truly horrendous idea...

● two root daemons: mds, mds_stores
● they operate in a SIP-protected directory on the volume:

● “/mntpoint/.Spotlight-V100/”
● SIP will use this as a regular expression to block access

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● umount the disk and edit it offline

● changing a directory name is easy in HFS+ :)
● buf.replace(b’\x31\x00\x30\x00\x30\x00’, b'\x39\x00\x30\x00\x30\x00’)

● .Spotlight-V100 → .Spotlight-V900
● this allows me to booby trap this directory

.Spotlight-V100

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● one of the (many) bugs:

● Spotlight writes cache files with open()
● follows symlinks, overwrites files with truncation

● the cache file has:
● attacker-controlled content
● a known filename → X.tmp, where X is the inode number

payload.pdf
junkjunkjunkjunkjunkjunkjunkjun
k

junkjunkjunkjunkjunkjunkjunkjun
k

ALL ALL=(ALL) NOPASSWD: ALL

junkjunkjunkjunkjunkjunkjunkjun
k

junkjunkjunkjunkjunkjunkjunkjun
k

file write

X.tmp

ALL ALL=(ALL) NOPASSWD: ALL

X.tmp

ALL ALL=(ALL) NOPASSWD: ALL

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● to exploit:
● symlink the desired cache file to /etc/sudoers
● place a pdf with arbitrary text on the volume

● content from the pdf will be written to /etc/sudoers

payload.pdf
junkjunkjunkjunkjunkjunkjunkjun
k

junkjunkjunkjunkjunkjunkjunkjun
k

ALL ALL=(ALL) NOPASSWD: ALL

junkjunkjunkjunkjunkjunkjunkjun
k

junkjunkjunkjunkjunkjunkjunkjun
k

/etc/sudoers

ALL ALL=(ALL) NOPASSWD: ALL
file write

X.tmp

ALL ALL=(ALL) NOPASSWD: ALL

X.tmp

symlink

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

● bounty: $0 (collision)
● the fix: Spotlight no longer likes symlinks :(

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● we can’t use symlinks now :(

● the /.Spotlight-V100 protection is still a regex match

● it’s not filesystem-aware
● no idea about mountpoints, symlinks, etc…

● hardlinks are sort of like symlinks

● if they’re on the same volume
● can we “merge” two different volumes somehow?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● Yes: we can use unions!

● union 101:

● top and bottom filesystems
● mounted over each other
● lookups start in top
● if name is missing

● fall back to bottom

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● unions:

A
B
C

D
E
F

A
B
C
D
E
F

union

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● unions:

A
B
C

A
B
C

A
B
C

union

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● unions:

A
B
C

A
B
C

A
B
C

A
B
C

union unlink(“B”)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● the file write bug is exploitable again

● mirror Spotlight’s directories on the system disk (bottom)
● mount the volume over it with union (top)
● delete the target file from top, so it’s used from bottom
● where it’s hardlinked to /etc/sudoers

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

This is how you symlink without symlinks!

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v2

● Apple finally paid me $17,000

● after more than a year, without any credit
● Lessons learned:

● Allowing users to mount their own images is absolutely insane
● Apple does pay for bugs

● the fix: Apple disallows unions for Spotlight

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #4 batsignal v1

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● alfred is actually batsignal v3

● to recap:

● Spotlight does insecure writes on user-provided volumes
● we can’t use symlinks
● we can’t use union-mounts :(

● Surely we are done, right?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● Nope, we can just move the mountpoint

● rugpull mds → write to system volume

● Apple did a good job of restricting mds, except:
● (regex #"^/private/var/folders/[^/]+/[^/]+/C/com.apple.metadata.mdworker($|/)")

● (regex #"^/private/var/folders/[^/]+/[^/]+/T/com.apple.metadata.mdworker($|/)")

● “/var/folders/RANDOM/RANDOM/T/com.apple.metadata.mdworker/”
● doesn’t exist, but can be created by us
● is not protected by SIP
● we’ll call this tmpdir

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● to exploit this:

● prepare the Spotlight directories in tmpdir
● create a hardlink to /etc/sudoers in tmpdir
● swap the mountpoint with tmpdir in a loop

● when the race is won:

● mds will operate under tmpdir
● this is allowed in the policy

● but how do we control the content?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● many bugs to pick from

● so I looked for a file create that

● we can smuggle our payload into
● recreates a file

● didn’t have to look too long:

● VolumeConfiguration.plist contains configuration options for
Spotlight

● has user-provided file exclusion paths
● gets re-created with the contents it remembered

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

● we can partially control data now

● which works well for sudo
● reads /etc/sudoers.d/*
● parses what it can
● ignores everything else

● with a valid sudo entry we escalate to root

● Apple paid $22,500 for this one

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #5 alfred

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● an at least 20 year old bug

● in macOS since at least 2005 (phrack #63)

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● if the dynamic loader (dyld) sees MallocStack* env vars:

● it force-loads MallocStackLogging.framework

● MallocStackLoggingDirectory=pwned:

● framework writes a debug file in pwned
● this happens in ALL processes, including suids

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● if the dynamic loader (dyld) sees MallocStack* env vars:

● it force-loads MallocStackLogging.framework

● MallocStackLoggingDirectory=pwned:

● framework writes a debug file in pwned
● this happens in ALL processes, including suids

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● defenses:

● 1. whatever is checked with access() first
● 2. open() will be used to create the file:

● won’t overwrite files
● and won’t follow symlinks

● 3. permissions are restricted (no umask() trickery)
● 4. the filename is randomized

● Pretty secure, right?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

● 1. whatever is checked with access() first
● access() / open() is classic TOCTOU

● 2. open() will be used to create the file:
● won’t overwrite files
● and won’t follow a symlink

● O_NOFOLLOW is used, not O_NOFOLLOW_ANY (!)
● 3. permissions are restricted (no umask() trickery)

● this actually helps
● 4. the filename is randomized

● sudo doesn’t care

BONUS: the random generator was hilariously broken...

Bugs: #6 badmalloc

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● one problem remains...

● we have negligible content control :(

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● however:

● every application is affected
● “host” app has no idea about the open()
● open() does not set O_CLOEXEC

● can we have a suid leak this fd?

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● Of course!

● crontab is suid and executes our $EDITOR

● it does not expect a force-loaded library to open a file

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● Of course!

● crontab is suid and executes our $EDITOR

● it does not expect a force-loaded library to open a file
● why would it? that’d be F@#%ING INSANE!

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● the exploit is trivial

● one access() / open() race, easy to win

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

● this cost Apple another $22,500

● again, a (minimum) 20 year old bug

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #6 badmalloc

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● a bug in the handling of JetPack files

● JetPack is a custom Apple archive format
● took me 30min to reverse
● container of containers
● supports tar, brotli, etc...
● supports encryption

● turned off by default...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● archive can be tampered with after download

● files are extracted with open() with O_NOFOLLOW and O_EXCL

● to a directory I can write to

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● archive can be tampered with after download

● files are extracted with open() with O_NOFOLLOW and O_EXCL

● to a directory I can write to

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● I can replace the archive with my own!

● include a malicious TCC.db 100 times :)

● yes, you can include the same file 100 times in a tar

→ 100x chance to win the open() race
● full path and content control

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● but what about O_EXCL?

● JetPack is friendly and even unlink()s the file if it exists
● lesson:

● it’s not obvious whether any single file operation is secure
● because they depend on each other

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● anyway, I abused Music again

● to gain FDA

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● The fix: Music FINALLY no longer has FDA

● bounty: $0

● Apple said this is not eligible
● they were already working on turning on encryption...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

● but they changed their minds!

● no idea why
● bounty: $30,500

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Bugs: #7 jetson

Video will come out with the blogpost

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Phew

● I hope you’re still awake... and that you learned something

● in case you are wondering:

total was $153,500

● so far...

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

This is only the start

● for more:

● https://gergelykalman.com
● “The missing guide to the security of filesystems and file APIs”

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

TO
CONTINUE

THIS
RESEARCH

I WANT YOU

https://gergelykalman.com/

The forgotten art of filesytem magic
https://gergelykalman.com (@gergely_kalman), 2024

Thank you!

Gergely Kalman
@gergely_kalman

https://gergelykalman.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

