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Intro

These are the technical slides that I always have to cut from my presentations. I try
to sprinkle them in, but it’s just always too much. So I decided that it’'s big enough
to be it’s own thing:

The missing guide to the security of filesystems and file APIs.
(a braindump of everything I know)

I will publish this on https://gergelykalman.com as well, with any potential
revisions/additions based on your feedback.

I hope you find it useful.
Gergely Kalman
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A quick riddle

on an HFS+ volume on mac0S
in a directory called ours owned by the attacker user
we can trigger a file creation

- by a system daemon running as root
« ours/secret can be created as root:wheel, perms “rwx------

« a POSIX “read” extended ACL will be created for attacker

« and an extended attribute called “com.apple.quarantine” will be
placed by the system

« content will be written to the file by the daemon
Question: can attacker read the contents of “secret”?
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If you think “How the *@!# should I know?”
You are not alone
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The question can’t be answered.
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Why not?

how is the mount situation?

« we don’t know how HFS+ is mounted

« 1s noowners on?
« can we turn it on?
« do we have access to the backing image?
+ 1s there anything mounted on top of ours?
is the secret “file” a regular file, or we just mean “file” in the general sense?

what about ACLs?

« 1s the ACL an allow or deny?
« are there any other ACLs on the file?
what is the value of the quarantine extended attribute?
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Why not?

 I'm not done...
* how 1s secret created?

« do we control the path or is it fixed?
« would open() follow symlinks?
- 1is it open() that gets called at all!?
 would umask be honored?
- who sets the permissions (is there a chmod() call)?
« 1s there a race between the file creation and

« application of the ACL?
« application of the extended attribute (quarantine flag)?
* who places this anyway?
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Why not?

STILL not done...
is the write() done securely?

« meaning it write()s to the file that it just opened

« or is this a creat()/open() race
can attacker use sudo?

cheeky, I know

is there a SIP rule on mac0S that prevents any of this for attacker?
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Well...

« this is a Quagmire

easy in theory but shockingly difficult in practice

not just on mac0S either: variants of these exist on Linux as well
Windows is different, but it has similar issues

I'm not a Windows guy so I won’t speak on it
but I suspect most of the concepts translate

quagmire noun

quag-mire kwag- m (-a)r <)

plural quagmires

Synonyms of
1 :soft miry land that shakes or yields under the foot

2 :adifficult, precarious, or entrapping position : PREDICAMENT
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Well...

« file ops are extremely difficult to get right

« and this is a HUGE problem

- 1if we (security researchers) can’t reason about them
then how can regular developers?
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Let’s learn some basics

e show of hands
« who knows about:

« POSIX standard file permissions (rwXrwxrwx)?
POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
Filesystem object types (file / dir / symlink / hardlink)?
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POSIX standard file permissions

« POSIX standard file permissions (rwxrwXrwx)?
« Everyone should be familiar with this
- To note:
 suid, sgid, sticky bit
« sgid for example inherits dir ownership on mkdir on Linux

« on BSD this is what happens by default (without sgid)
« FML
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POSIX file APIs

« POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
« most of you should know at least a few of these syscalls
« defined in IEEE Std 1003.1-2024

 https://pubs.opengroup.org/onlinepubs/9799919799/
despite the massive standard, 0Ses still had to augment it:

- for example: renameat2() on Linux, renameatx_np() on macOS

- new features:
- prevents symlinks everywhere in the path
« swap file inodes atomically

« sometimes regular POSIX-standard syscalls can take extra, non-
POSIX flags, like O DIRECT on Linux
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POSIX file APIs

- some APIs fell hilariously short
- just a few examples:

« rename(src, dst) - no way to prevent symlinks from being followed

- open()’'s O NOFOLLOW prevents resolving only the last path
component

 bad enough that 0Ses rolled their own versions

« sometimes these made it back into POSIX, sometimes they didn’t

« 1f you want portability you miss out on these (mostly security)
features
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Advanced filesystem stuff

« who knows about:

POSIX extended ACLs?

Filesystem object types (file / dir / symlink / hardlink)?
« Filesystem internals?
« POSIX pitfalls?
« Filesystem extended attributes?
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POSIX extended ACLSs

not a lot of people know that this is even a thing (I didn’t)
IEEE 1003.1le draft 17

A revoked (abandoned) POSIX standard

Got implemented anyway

« different implementations (Linux ACL '= BSD/macO0S ACL)

- useless for portability
great for security researchers

Creates edge cases that no program/library expects

« especially portable ones
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POSIX extended ACLSs

« for example on macOS I can use:

« file inherit - Inherits the directory’s ACL to files created in them
« root creates a file with “rwx------ perms in a directory I control

« without ACLs:

« best I can do is remove the file and recreate it
« but this often doesn’t help
« with ACLs:
« I can give myself any permission on the file
« that also stays on the file if it moves
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POSIX extended ACLSs

« extended ACLs are very backdoor-like
« they’re “hidden”

« 1invisible unless you look for it

« traditional POSIX calls like stat() won’t show them
- most hackers and most programmers don’t even know they exist

« they tamper with important security functionality
« differently on each 0S
« they are available to unprivileged users
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Filesystem object types

« You definitely have to know these
- file (reg), directory, symlink, fifo, blockdev, chardev, socket
- of course 0S-es sometimes have others:

- whiteout on macO0S
« door on Solaris
« Notice how hardlink is not here...

 because it’s not a “file type”
« it’s an organizational quirk
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Hardlinks

« the same file under two different names
« only within a single filesystem
« can’'t cross filesystems like symlinks can
- two names - one inode
« not a clone, literally the same thing
« one object from two separate viewpoints
« lots of stuff can be hardlinked
« symlink, socket, etc...
« but not a directory
- well, at least not officially
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Hardlinks

« directory hardlinks
 these are everywhere, but not like you think:

« “.” 1is a hardlink to self
« “..” 1s a hardlink to parent
« ./a/b - b is a hardlink in dir a to the inode of b
« “actual” hardlinks between ./x/a/ and ./x/b/ are strictly forbidden

« 1in theory, we’ll talk about it later...
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Three layers of attack surface

- API layer
 bugs in userspace applications
- example: open() done insecurely
 VFS layer
 these bugs are in the kernel
« example: VFS removes a directory even though unlink() was called
- FS layer
« user or kernelspace - depending on where the FS driver runs from
« example: FAT32 driver can be raced to return an error unnecessarily
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POSIX file APIs

- some APIs fell hilariously short
- just a few examples:

« rename(src, dst) - no way to prevent symlinks from being followed

- open()’s O NOFOLLOW prevents resolving only the last path
component

 bad enough that 0Ses rolled their own versions

« sometimes these made it back into POSIX, sometimes they didn’t

« 1f you want portability you miss out on these (mostly security)
features
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POSIX compatiblity

« 1in case you were wondering:
« Linux is not fully POSIX-compatible
« neither is FreeBSD
« and definitely not macOS
« since the VFS comes from FreeBSD..
- they are very close though
- so when I say POSIX:

« think: everything except Windows
I know, WSL, I don’t have time
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VFS

VFS - Virtual Filesystem Switch
- open() syscall - VFS open - FS open

VFS translates between the user and the underlying FS driver
great idea, but abstractions are always leaky
VFS abstracts a HUGE attack surface — easy to forget

every mountable filesystem driver is exposed via the VFS
VFS also takes care of some things itself
« caching

lots of global filesystem magic

« union mounts,

resource forks, AppleDouble handling, firmlinks,
etc...
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VFS attack surface

- VFS has to “translate” things

« not all filesystems support everything

« sometimes FS drivers are just plain stupid

« sometimes they just don’t support things that are “required”
- for example:

« mac0S purges AppleDouble files from an otherwise empty directory on
rmdir() when it would fail with ENOTEMPTY

« this is done everywhere, in VFS, even if the volume does support
xattrs and has no use for AppleDouble

* yes, horrific. Thank you
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FS driver attack surface

* FS code is often old/dumb/bad

* FS code is sometimes modified to support weird shit, usually for
compatibility
« for example: on macOS there are symlinks on FAT32 volumes

 they are “emulated” using regular files with magic sizes and
content

* yeah :|
- every 0S has tons of compatibility code like this
« that is rarely exercised or tested...
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FS driver attack surface

FS drivers are particularly vulnerable to malicious images
« since they are in large part just elaborate file format parsers
« SO you can create impossible, forbidden structures

« hexedit / custom drivers / userspace drivers

« create hardlinked directories

« create an infinite directory loop
« create files with 2 hardlinks but linkcount of 1
« endless possibilities...
« traditionally users can’t mount disk images for exactly this reason

« except on macO0S
« and some Linux distros
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Path resolution

the process by which a user-supplied name can be turned into the kernel
representation of an inode

two types of paths
- absolute “/etc/passwd”
 relative “./hello.txt”

 this depends on the CWD (Current Working Directory)
this is in-band signaling: “does the file start with /”?
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Path resolution

« path resolution is really unintuitive sometimes...

« since the filesystem is a hallucination
« you always see a snapshot of the filesystem structure
« which might be out of date by the time the kernel returns
« which 1is interesting, but is it important?
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Path resolution

« oh yes!
« consider this:
$ echo hi > secret.txt
$ mkdir -p a/b/c/d/e/f/g/h/1i/j/k/ 1/
$ cat a/b/c/d/e/f/qg/h/i/j/k/1/../secret.txt
cat: a/b/c/d/e/f/g/h/i/j/k/ /. ./secret.txt: No such file or directory
this obviously failed...
but what if I move “1” at just the right time?
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Path resolution

« process 1 loop:
$ cat a/b/c/d/e/f/g/h/i/j/k/1/../secret.txt
* process 2:
$ mkdir ./x
$ switchdirs ./x ./a/b/c/d/e/f/g/h/i/j/k/1
« switchdirs implements atomic rename swap in a loop
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Path resolution

e after a while the race is won

- between the lookup of 1 and the lookup of “..” (in 1) - 1 will have
moved

« 1if this happens, “..”
parent of x
« and here, there is a file called secret.txt

 this race could be optimized a lot more, but you get my point

no longer points to k but to the (old)

« you can’t trust anything once someone else has access to it
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POSIX pitfalls

« The POSIX filesystem API was never meant to handle concurrent access

any concurrent access across privilege boundaries is disastrous

e POSIX had some bad API choices:

open()’s 0 _NOFOLLOW prevents resolving only the last path component
« fun fact: this was not even part of POSIX until POSIX.1-2008
open() originally had no 0 CLOEXEC - only since POSIX.1-2008

« 1f you executed any other program it got access to all your
currently opened fds

rename() always follows symlinks (well, it’s complicated)
there are many others
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POSIX pitfalls

- access()/open() race
« the most classic TOCTOU (Time of Check Time of Use)
« proven to be impossible to secure
« symlinks
- a great feature
 but has to be explicitly handled by every program
« in-band signaling
« special meaning of “/” at the start of a path signals absolute path

« this becomes an issue if you can have the path truncated
« which is a super common bug that no-one cares about
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POSIX pitfalls

* no copy() system call
- SO0 every program has to implement their own file copy routines
« and they usually do it badly

« no recursive unlink() or rmdir() either

« good luck hand-rolling these

 this is impossible to do correctly, for a multitude of reasons
« too barebones

« every program has to implement tons of boilerplate
* so libraries usually provide this
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Well-known pitfalls

- symlinks are nasty
- tempfiles are a nightmare
« file descriptor names are hardcoded (stderr closing trick)

close stderr before running the victim program
victim opens a file for writing

will be at fd #2, since that’s the lowest available fd
victim writes an error message to the file it just opened since stderr == fd #2

« only useful with programs that start at a higher privilege than you
 suids (kernel mitigates these)
« entitled binaries on macO0S
* Oops...
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Filesystem extended attributes

« Most filesystems support “extra” stuff
- extended attributes
« special mount flags
- example:
ext2/3/4:

« append-only/immutable/undeletable files that override ALL
permission checks

«  HFS+:
« attributes, resource forks, compression, etc..
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Resource fork rant

« mac0S resource forks are insane:

$ rm a; echo hi>a; echo wat>a/..namedfork/rsrc; cat
a/..namedfork/rsrc

wat
- let’s add this insanity into the path lookup

 WHY NOT!?
« who needs consistency anyway?
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Resource fork rant

”n

« 1if the meaning of special markers (“..” and “/"”) is not consistent,

multiple interpretations will exist (duh)
« what does this look like: “./a/..namedfork/rsrc”?

- everyone:

"

e rsrc in the
* macO0S:

. .namedfork” directory of directory “a”

e the resource fork named “rsrc” of file “a”
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mount pitfalls

mountpoints can move

« 1if you can rename() their parents

the same disk can be mounted multiple times (not on macOS)
bind mounts

« the same FS 1is in two different locations at the same time
« can overlap for added hilarity
union (mac0S) / overlay (Linux) mounts

« lookups traverse to the FS under the current one if a file is not
found
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mac0S-specific pitfalls

« I have done a lot of mac0S/i0S research recently
« these most likely won’t translate to Linux
« but I included them to give you some ideas
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mac0S-specific pitfalls

mkdir(path) creates a directory through a dangling link if path ends in “/”

a completely undocumented quirk of macO0S

/.vol/ supports accessing files by fsid + inodenum:

$ stat /etc/passwd

16777225 40077649 -rw-r--r-- 1 root wheel 0 8542 "Aug 12 13:45:20 2024" "May 7 09:01:44 2024" "May 14 12:02:37 2024" "May
7 09:01:44 2024" 4096 8 0x20 /etc/passwd

$ stat /.vol/16777225/40077649

16777225 40077649 -rw-r--r-- 1 root wheel 0 8542 "Aug 12 13:45:20 2024" "May 7 09:01:44 2024" "May 14 12:02:37 2024" "May
7 09:01:44 2024" 4096 8 0x20 /.vol/16777225/40077649

not a security issue, but really convenient for exploitation

« inodenum is monotonically increasing

/.file is similar to /.vol

I think, help me out here
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mac0S-specific pitfalls

unprivileged users can mount any image they want

 no comment

mac0S relies on extended attributes (xattrs) for security

« you can just mount a filesystem that doesn’t support them...
filesystem is case-insensitive by default (macO0S only, i0S is not)
« good edge cases like: rename(“./a” “./A")

« random filenames are considerably less random...

union mounts are available

« specially handled by the VFS everywhere
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mac0S-specific pitfalls

« firmlinks
- Apple’s magical bind-mounts
« also specially handled by the VFS everywhere
« doesn’t physically exist on disk
« hardlinked directories

« these are permitted(!) on some filesystems

 like HFS+
« creating them from the host 0S is pretty restricted though

« they no longer seem to work on the latest version
 but you can always just create them on Linux or with a hex editor
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mac0S-specific pitfalls

« has AppleSingle/AppleDouble files

only AppleDouble matters for us (AppleSingle is legacy)

« if a FS doesn’t support xattrs mac0S will emulate them
by creating another file of the same name and prefix “._
- and storing the xattr value there
 a nightmare of a “solution”
« the VFS is responsible for this
« anything you do on the lower levels can clash with it

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024


https://gergelykalman.com/

mac0S-specific pitfalls

« kernel crash time!
$ mkdir mnt
touch mnt/. a
hdiutil create -size 128m -fs MS-DOS disk.dmg # create disk
hdiutil attach disk.dmg -owners off -nomount # mount disk
mount msdos -0 union /dev/disk4sl mnt # remount as union

“H A A A A

touch mnt/a
« this used to panic the kernel :)

« 1t got fixed recently (after two years)
source: https://github.com/gergelykalman/macos-crasher
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Learn more

« You can get more information about all of this by using
* man pages
« “man 1s” 1is a good place to start
- standards
« good to find interesting things
« not authoritative enough

« standard is broken surprisingly often
- kernel source code

 best source of information
« not as intimidating as you think
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Thank You

 Please reach out if you have questions:
 https://gergelykalman.com
- gergely [AT] gergelykalman.com
 @gergely kalman on Twitter (X)

« Please tell me what you think about this!
- any suggestions / corrections?
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