The missing guide to the security of
filesystems and file APIs

Gergely Kalman
vl, 2024

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Intro

These are the technical slides that I always have to cut from my presentations. I try
to sprinkle them in, but it’s just always too much. So I decided that it’'s big enough
to be it’s own thing:

The missing guide to the security of filesystems and file APIs.
(a braindump of everything I know)

I will publish this on https://gergelykalman.com as well, with any potential
revisions/additions based on your feedback.

I hope you find it useful.
Gergely Kalman

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/
https://gergelykalman.com/

A quick riddle

on an HFS+ volume on mac0S
in a directory called ours owned by the attacker user
we can trigger a file creation

- by a system daemon running as root
« ours/secret can be created as root:wheel, perms “rwx------

« a POSIX “read” extended ACL will be created for attacker

« and an extended attribute called “com.apple.quarantine” will be
placed by the system

« content will be written to the file by the daemon
Question: can attacker read the contents of “secret”?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

If you think “How the *@!# should I know?”
You are not alone

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

The question can’t be answered.

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely kalman), 2024

https://gergelykalman.com/

Why not?

how is the mount situation?

« we don’t know how HFS+ is mounted

« 1s noowners on?
« can we turn it on?
« do we have access to the backing image?
+ 1s there anything mounted on top of ours?
is the secret “file” a regular file, or we just mean “file” in the general sense?

what about ACLs?

« 1s the ACL an allow or deny?
« are there any other ACLs on the file?
what is the value of the quarantine extended attribute?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Why not?

 I'm not done...
* how 1s secret created?

« do we control the path or is it fixed?
« would open() follow symlinks?
- 1is it open() that gets called at all!?
 would umask be honored?
- who sets the permissions (is there a chmod() call)?
« 1s there a race between the file creation and

« application of the ACL?
« application of the extended attribute (quarantine flag)?
* who places this anyway?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Why not?

STILL not done...
is the write() done securely?

« meaning it write()s to the file that it just opened

« or is this a creat()/open() race
can attacker use sudo?

cheeky, I know

is there a SIP rule on mac0S that prevents any of this for attacker?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Well...

« this is a Quagmire

easy in theory but shockingly difficult in practice

not just on mac0S either: variants of these exist on Linux as well
Windows is different, but it has similar issues

I'm not a Windows guy so I won’t speak on it
but I suspect most of the concepts translate

quagmire noun

quag-mire kwag- m (-a)r <)

plural quagmires

Synonyms of
1 :soft miry land that shakes or yields under the foot

2 :adifficult, precarious, or entrapping position : PREDICAMENT

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Well...

« file ops are extremely difficult to get right

« and this is a HUGE problem

- 1if we (security researchers) can’t reason about them
then how can regular developers?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Let’s learn some basics

e show of hands
« who knows about:

« POSIX standard file permissions (rwXrwxrwx)?
POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
Filesystem object types (file / dir / symlink / hardlink)?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX standard file permissions

« POSIX standard file permissions (rwxrwXrwx)?
« Everyone should be familiar with this
- To note:
 suid, sgid, sticky bit
« sgid for example inherits dir ownership on mkdir on Linux

« on BSD this is what happens by default (without sgid)
« FML

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX file APIs

« POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
« most of you should know at least a few of these syscalls
« defined in IEEE Std 1003.1-2024

 https://pubs.opengroup.org/onlinepubs/9799919799/
despite the massive standard, 0Ses still had to augment it:

- for example: renameat2() on Linux, renameatx_np() on macOS

- new features:
- prevents symlinks everywhere in the path
« swap file inodes atomically

« sometimes regular POSIX-standard syscalls can take extra, non-
POSIX flags, like O DIRECT on Linux

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/
https://pubs.opengroup.org/onlinepubs/9799919799/

POSIX file APIs

- some APIs fell hilariously short
- just a few examples:

« rename(src, dst) - no way to prevent symlinks from being followed

- open()’'s O NOFOLLOW prevents resolving only the last path
component

 bad enough that 0Ses rolled their own versions

« sometimes these made it back into POSIX, sometimes they didn’t

« 1f you want portability you miss out on these (mostly security)
features

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Advanced filesystem stuff

« who knows about:

POSIX extended ACLs?

Filesystem object types (file / dir / symlink / hardlink)?
« Filesystem internals?
« POSIX pitfalls?
« Filesystem extended attributes?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX extended ACLSs

not a lot of people know that this is even a thing (I didn’t)
IEEE 1003.1le draft 17

A revoked (abandoned) POSIX standard

Got implemented anyway

« different implementations (Linux ACL '= BSD/macO0S ACL)

- useless for portability
great for security researchers

Creates edge cases that no program/library expects

« especially portable ones

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX extended ACLSs

« for example on macOS I can use:

« file inherit - Inherits the directory’s ACL to files created in them
« root creates a file with “rwx------ perms in a directory I control

« without ACLs:

« best I can do is remove the file and recreate it
« but this often doesn’t help
« with ACLs:
« I can give myself any permission on the file
« that also stays on the file if it moves

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX extended ACLSs

« extended ACLs are very backdoor-like
« they’re “hidden”

« 1invisible unless you look for it

« traditional POSIX calls like stat() won’t show them
- most hackers and most programmers don’t even know they exist

« they tamper with important security functionality
« differently on each 0S
« they are available to unprivileged users

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Filesystem object types

« You definitely have to know these
- file (reg), directory, symlink, fifo, blockdev, chardev, socket
- of course 0S-es sometimes have others:

- whiteout on macO0S
« door on Solaris
« Notice how hardlink is not here...

 because it’s not a “file type”
« it’s an organizational quirk

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Hardlinks

« the same file under two different names
« only within a single filesystem
« can’'t cross filesystems like symlinks can
- two names - one inode
« not a clone, literally the same thing
« one object from two separate viewpoints
« lots of stuff can be hardlinked
« symlink, socket, etc...
« but not a directory
- well, at least not officially

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Hardlinks

« directory hardlinks
 these are everywhere, but not like you think:

« “.” 1is a hardlink to self
« “..” 1s a hardlink to parent
« ./a/b - b is a hardlink in dir a to the inode of b
« “actual” hardlinks between ./x/a/ and ./x/b/ are strictly forbidden

« 1in theory, we’ll talk about it later...

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Three layers of attack surface

- API layer
 bugs in userspace applications
- example: open() done insecurely
 VFS layer
 these bugs are in the kernel
« example: VFS removes a directory even though unlink() was called
- FS layer
« user or kernelspace - depending on where the FS driver runs from
« example: FAT32 driver can be raced to return an error unnecessarily

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX file APIs

- some APIs fell hilariously short
- just a few examples:

« rename(src, dst) - no way to prevent symlinks from being followed

- open()’s O NOFOLLOW prevents resolving only the last path
component

 bad enough that 0Ses rolled their own versions

« sometimes these made it back into POSIX, sometimes they didn’t

« 1f you want portability you miss out on these (mostly security)
features

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX compatiblity

« 1in case you were wondering:
« Linux is not fully POSIX-compatible
« neither is FreeBSD
« and definitely not macOS
« since the VFS comes from FreeBSD..
- they are very close though
- so when I say POSIX:

« think: everything except Windows
I know, WSL, I don’t have time

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

VFS

VFS - Virtual Filesystem Switch
- open() syscall - VFS open - FS open

VFS translates between the user and the underlying FS driver
great idea, but abstractions are always leaky
VFS abstracts a HUGE attack surface — easy to forget

every mountable filesystem driver is exposed via the VFS
VFS also takes care of some things itself
« caching

lots of global filesystem magic

« union mounts,

resource forks, AppleDouble handling, firmlinks,
etc...

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

VFS attack surface

- VFS has to “translate” things

« not all filesystems support everything

« sometimes FS drivers are just plain stupid

« sometimes they just don’t support things that are “required”
- for example:

« mac0S purges AppleDouble files from an otherwise empty directory on
rmdir() when it would fail with ENOTEMPTY

« this is done everywhere, in VFS, even if the volume does support
xattrs and has no use for AppleDouble

* yes, horrific. Thank you

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

FS driver attack surface

* FS code is often old/dumb/bad

* FS code is sometimes modified to support weird shit, usually for
compatibility
« for example: on macOS there are symlinks on FAT32 volumes

 they are “emulated” using regular files with magic sizes and
content

* yeah :|
- every 0S has tons of compatibility code like this
« that is rarely exercised or tested...

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

FS driver attack surface

FS drivers are particularly vulnerable to malicious images
« since they are in large part just elaborate file format parsers
« SO you can create impossible, forbidden structures

« hexedit / custom drivers / userspace drivers

« create hardlinked directories

« create an infinite directory loop
« create files with 2 hardlinks but linkcount of 1
« endless possibilities...
« traditionally users can’t mount disk images for exactly this reason

« except on macO0S
« and some Linux distros

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Path resolution

the process by which a user-supplied name can be turned into the kernel
representation of an inode

two types of paths
- absolute “/etc/passwd”
 relative “./hello.txt”

 this depends on the CWD (Current Working Directory)
this is in-band signaling: “does the file start with /”?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Path resolution

« path resolution is really unintuitive sometimes...

« since the filesystem is a hallucination
« you always see a snapshot of the filesystem structure
« which might be out of date by the time the kernel returns
« which 1is interesting, but is it important?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Path resolution

« oh yes!
« consider this:
$ echo hi > secret.txt
$ mkdir -p a/b/c/d/e/f/g/h/1i/j/k/ 1/
$ cat a/b/c/d/e/f/qg/h/i/j/k/1/../secret.txt
cat: a/b/c/d/e/f/g/h/i/j/k/ /. ./secret.txt: No such file or directory
this obviously failed...
but what if I move “1” at just the right time?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Path resolution

« process 1 loop:
$ cat a/b/c/d/e/f/g/h/i/j/k/1/../secret.txt
* process 2:
$ mkdir ./x
$ switchdirs ./x ./a/b/c/d/e/f/g/h/i/j/k/1
« switchdirs implements atomic rename swap in a loop

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Path resolution

e after a while the race is won

- between the lookup of 1 and the lookup of “..” (in 1) - 1 will have
moved

« 1if this happens, “..”
parent of x
« and here, there is a file called secret.txt

 this race could be optimized a lot more, but you get my point

no longer points to k but to the (old)

« you can’t trust anything once someone else has access to it

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX pitfalls

« The POSIX filesystem API was never meant to handle concurrent access

any concurrent access across privilege boundaries is disastrous

e POSIX had some bad API choices:

open()’s 0 _NOFOLLOW prevents resolving only the last path component
« fun fact: this was not even part of POSIX until POSIX.1-2008
open() originally had no 0 CLOEXEC - only since POSIX.1-2008

« 1f you executed any other program it got access to all your
currently opened fds

rename() always follows symlinks (well, it’s complicated)
there are many others

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX pitfalls

- access()/open() race
« the most classic TOCTOU (Time of Check Time of Use)
« proven to be impossible to secure
« symlinks
- a great feature
 but has to be explicitly handled by every program
« in-band signaling
« special meaning of “/” at the start of a path signals absolute path

« this becomes an issue if you can have the path truncated
« which is a super common bug that no-one cares about

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

POSIX pitfalls

* no copy() system call
- SO0 every program has to implement their own file copy routines
« and they usually do it badly

« no recursive unlink() or rmdir() either

« good luck hand-rolling these

 this is impossible to do correctly, for a multitude of reasons
« too barebones

« every program has to implement tons of boilerplate
* so libraries usually provide this

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Well-known pitfalls

- symlinks are nasty
- tempfiles are a nightmare
« file descriptor names are hardcoded (stderr closing trick)

close stderr before running the victim program
victim opens a file for writing

will be at fd #2, since that’s the lowest available fd
victim writes an error message to the file it just opened since stderr == fd #2

« only useful with programs that start at a higher privilege than you
 suids (kernel mitigates these)
« entitled binaries on macO0S
* Oops...

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Filesystem extended attributes

« Most filesystems support “extra” stuff
- extended attributes
« special mount flags
- example:
ext2/3/4:

« append-only/immutable/undeletable files that override ALL
permission checks

« HFS+:
« attributes, resource forks, compression, etc..

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Resource fork rant

« mac0S resource forks are insane:

$ rm a; echo hi>a; echo wat>a/..namedfork/rsrc; cat
a/..namedfork/rsrc

wat
- let’s add this insanity into the path lookup

 WHY NOT!?
« who needs consistency anyway?

The missing guide to the /8 :
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Resource fork rant

”n

« 1if the meaning of special markers (“..” and “/"”) is not consistent,

multiple interpretations will exist (duh)
« what does this look like: “./a/..namedfork/rsrc”?

- everyone:

"

e rsrc in the
* macO0S:

. .namedfork” directory of directory “a”

e the resource fork named “rsrc” of file “a”

The missing guide to the /8 :
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mount pitfalls

mountpoints can move

« 1if you can rename() their parents

the same disk can be mounted multiple times (not on macOS)
bind mounts

« the same FS 1is in two different locations at the same time
« can overlap for added hilarity
union (mac0S) / overlay (Linux) mounts

« lookups traverse to the FS under the current one if a file is not
found

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mac0S-specific pitfalls

« I have done a lot of mac0S/i0S research recently
« these most likely won’t translate to Linux
« but I included them to give you some ideas

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mac0S-specific pitfalls

mkdir(path) creates a directory through a dangling link if path ends in “/”

a completely undocumented quirk of macO0S

/.vol/ supports accessing files by fsid + inodenum:

$ stat /etc/passwd

16777225 40077649 -rw-r--r-- 1 root wheel 0 8542 "Aug 12 13:45:20 2024" "May 7 09:01:44 2024" "May 14 12:02:37 2024" "May
7 09:01:44 2024" 4096 8 0x20 /etc/passwd

$ stat /.vol/16777225/40077649

16777225 40077649 -rw-r--r-- 1 root wheel 0 8542 "Aug 12 13:45:20 2024" "May 7 09:01:44 2024" "May 14 12:02:37 2024" "May
7 09:01:44 2024" 4096 8 0x20 /.vol/16777225/40077649

not a security issue, but really convenient for exploitation

« inodenum is monotonically increasing

/.file is similar to /.vol

I think, help me out here

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mac0S-specific pitfalls

unprivileged users can mount any image they want

 no comment

mac0S relies on extended attributes (xattrs) for security

« you can just mount a filesystem that doesn’t support them...
filesystem is case-insensitive by default (macO0S only, i0S is not)
« good edge cases like: rename(“./a” “./A")

« random filenames are considerably less random...

union mounts are available

« specially handled by the VFS everywhere

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mac0S-specific pitfalls

« firmlinks
- Apple’s magical bind-mounts
« also specially handled by the VFS everywhere
« doesn’t physically exist on disk
« hardlinked directories

« these are permitted(!) on some filesystems

 like HFS+
« creating them from the host 0S is pretty restricted though

« they no longer seem to work on the latest version
 but you can always just create them on Linux or with a hex editor

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mac0S-specific pitfalls

« has AppleSingle/AppleDouble files

only AppleDouble matters for us (AppleSingle is legacy)

« if a FS doesn’t support xattrs mac0S will emulate them
by creating another file of the same name and prefix “._
- and storing the xattr value there
 a nightmare of a “solution”
« the VFS is responsible for this
« anything you do on the lower levels can clash with it

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

mac0S-specific pitfalls

« kernel crash time!
$ mkdir mnt
touch mnt/. a
hdiutil create -size 128m -fs MS-DOS disk.dmg # create disk
hdiutil attach disk.dmg -owners off -nomount # mount disk
mount msdos -0 union /dev/disk4sl mnt # remount as union

“H A A A A

touch mnt/a
« this used to panic the kernel :)

« 1t got fixed recently (after two years)
source: https://github.com/gergelykalman/macos-crasher

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Learn more

« You can get more information about all of this by using
* man pages
« “man 1s” 1is a good place to start
- standards
« good to find interesting things
« not authoritative enough

« standard is broken surprisingly often
- kernel source code

 best source of information
« not as intimidating as you think

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/

Thank You

 Please reach out if you have questions:
 https://gergelykalman.com
- gergely [AT] gergelykalman.com
 @gergely kalman on Twitter (X)

« Please tell me what you think about this!
- any suggestions / corrections?

The missing guide to the security of filesystems and file APIs vl
https://gergelykalman.com (@gergely_kalman), 2024

https://gergelykalman.com/
https://gergelykalman.com/

