
The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

The missing guide to the security of
filesystems and file APIs

Gergely Kalman
v1, 2024

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Intro

These are the technical slides that I always have to cut from my presentations. I try
to sprinkle them in, but it’s just always too much. So I decided that it’s big enough
to be it’s own thing:

The missing guide to the security of filesystems and file APIs.
(a braindump of everything I know)

I will publish this on https://gergelykalman.com as well, with any potential
revisions/additions based on your feedback.

I hope you find it useful.

Gergely Kalman

https://gergelykalman.com/
https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

A quick riddle

● on an HFS+ volume on macOS

● in a directory called ours owned by the attacker user

● we can trigger a file creation

● by a system daemon running as root
● ours/secret can be created as root:wheel, perms “rwx------”

● a POSIX “read” extended ACL will be created for attacker
● and an extended attribute called “com.apple.quarantine” will be

placed by the system
● content will be written to the file by the daemon

● Question: can attacker read the contents of “secret”?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

If you think “How the *@!# should I know?”

You are not alone

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

The question can’t be answered.

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Why not?

● how is the mount situation?

● we don’t know how HFS+ is mounted

● is noowners on?
● can we turn it on?
● do we have access to the backing image?

● is there anything mounted on top of ours?

● is the secret “file” a regular file, or we just mean “file” in the general sense?

● what about ACLs?

● is the ACL an allow or deny?

● are there any other ACLs on the file ?

● what is the value of the quarantine extended attribute?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Why not?

● I’m not done...

● how is secret created?

● do we control the path or is it fixed?

● would open() follow symlinks?

● is it open() that gets called at all!?
● would umask be honored?

● who sets the permissions (is there a chmod() call)?

● is there a race between the file creation and

● application of the ACL?
● application of the extended attribute (quarantine flag)?

● who places this anyway?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Why not?

● STILL not done...

● is the write() done securely?

● meaning it write()s to the file that it just opened
● or is this a creat()/open() race

● can attacker use sudo?
● cheeky, I know

● is there a SIP rule on macOS that prevents any of this for attacker?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Well...

● this is a Quagmire

● easy in theory but shockingly difficult in practice
● not just on macOS either: variants of these exist on Linux as well

● Windows is different, but it has similar issues

● I’m not a Windows guy so I won’t speak on it
● but I suspect most of the concepts translate

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Well...

● file ops are extremely difficult to get right

● and this is a HUGE problem
● if we (security researchers) can’t reason about them

then how can regular developers?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Let’s learn some basics

● show of hands

● who knows about:

● POSIX standard file permissions (rwxrwxrwx)?
● POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
● Filesystem object types (file / dir / symlink / hardlink)?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX standard file permissions

● POSIX standard file permissions (rwxrwxrwx)?
● Everyone should be familiar with this

● To note:

● suid, sgid, sticky bit
● sgid for example inherits dir ownership on mkdir on Linux

● on BSD this is what happens by default (without sgid)
● FML

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX file APIs

● POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
● most of you should know at least a few of these syscalls
● defined in IEEE Std 1003.1-2024

● https://pubs.opengroup.org/onlinepubs/9799919799/
● despite the massive standard, OSes still had to augment it:

● for example: renameat2() on Linux, renameatx_np() on macOS
● new features:

● prevents symlinks everywhere in the path
● swap file inodes atomically

● sometimes regular POSIX-standard syscalls can take extra, non-
POSIX flags, like O_DIRECT on Linux

https://gergelykalman.com/
https://pubs.opengroup.org/onlinepubs/9799919799/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX file APIs

● some APIs fell hilariously short
● just a few examples:

● rename(src, dst) → no way to prevent symlinks from being followed
● open()’s O_NOFOLLOW prevents resolving only the last path

component
● bad enough that OSes rolled their own versions

● sometimes these made it back into POSIX, sometimes they didn’t
● if you want portability you miss out on these (mostly security)

features

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Advanced filesystem stuff

● who knows about:

● POSIX standard file permissions (rwxrwxrwx)?
● POSIX file APIs (open, read, chmod, unlink, mkdir, rename, ...)?
● POSIX extended ACLs?
● Filesystem object types (file / dir / symlink / hardlink)?
● Filesystem internals?
● POSIX pitfalls?
● Filesystem extended attributes?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX extended ACLs

● not a lot of people know that this is even a thing (I didn’t)

● IEEE 1003.1e draft 17

● A revoked (abandoned) POSIX standard

● Got implemented anyway

● different implementations (Linux ACL != BSD/macOS ACL)

→ useless for portability
● great for security researchers

● Creates edge cases that no program/library expects

● especially portable ones

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX extended ACLs

● for example on macOS I can use:

● file_inherit → Inherits the directory’s ACL to files created in them
● root creates a file with “rwx------” perms in a directory I control

● without ACLs:
● best I can do is remove the file and recreate it

● but this often doesn’t help
● with ACLs:

● I can give myself any permission on the file
● that also stays on the file if it moves

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX extended ACLs

● extended ACLs are very backdoor-like

● they’re “hidden”
● invisible unless you look for it

● traditional POSIX calls like stat() won’t show them
● most hackers and most programmers don’t even know they exist

● they tamper with important security functionality
● differently on each OS

● they are available to unprivileged users

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Filesystem object types

● You definitely have to know these
● file (reg), directory, symlink, fifo, blockdev, chardev, socket
● of course OS-es sometimes have others:

● whiteout on macOS
● door on Solaris

● Notice how hardlink is not here...
● because it’s not a “file type”
● it’s an organizational quirk

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Hardlinks

● the same file under two different names
● only within a single filesystem

● can’t cross filesystems like symlinks can
● two names → one inode

● not a clone, literally the same thing
● one object from two separate viewpoints

● lots of stuff can be hardlinked
● symlink, socket, etc...
● but not a directory

● well, at least not officially

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Hardlinks

● directory hardlinks
● these are everywhere, but not like you think:

● “.” is a hardlink to self
● “..” is a hardlink to parent
● ./a/b → b is a hardlink in dir a to the inode of b

● “actual” hardlinks between ./x/a/ and ./x/b/ are strictly forbidden
● in theory, we’ll talk about it later...

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Three layers of attack surface

● API layer
● bugs in userspace applications
● example: open() done insecurely

● VFS layer

● these bugs are in the kernel
● example: VFS removes a directory even though unlink() was called

● FS layer

● user or kernelspace - depending on where the FS driver runs from
● example: FAT32 driver can be raced to return an error unnecessarily

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX file APIs

● some APIs fell hilariously short
● just a few examples:

● rename(src, dst) → no way to prevent symlinks from being followed
● open()’s O_NOFOLLOW prevents resolving only the last path

component
● bad enough that OSes rolled their own versions

● sometimes these made it back into POSIX, sometimes they didn’t
● if you want portability you miss out on these (mostly security)

features

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX compatiblity

● in case you were wondering:
● Linux is not fully POSIX-compatible
● neither is FreeBSD
● and definitely not macOS

● since the VFS comes from FreeBSD…
● they are very close though

● so when I say POSIX:

● think: everything except Windows
● I know, WSL, I don’t have time

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

VFS

● VFS - Virtual Filesystem Switch

● open() syscall → VFS open → FS open

● VFS translates between the user and the underlying FS driver
● great idea, but abstractions are always leaky

● VFS abstracts a HUGE attack surface – easy to forget

● every mountable filesystem driver is exposed via the VFS
● VFS also takes care of some things itself

● caching
● lots of global filesystem magic

● union mounts, resource forks, AppleDouble handling, firmlinks,
etc...

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

VFS attack surface

● VFS has to “translate” things
● not all filesystems support everything
● sometimes FS drivers are just plain stupid
● sometimes they just don’t support things that are “required”

● for example:

● macOS purges AppleDouble files from an otherwise empty directory on
rmdir() when it would fail with ENOTEMPTY

● this is done everywhere, in VFS, even if the volume does support
xattrs and has no use for AppleDouble

● yes, horrific. Thank you

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

FS driver attack surface

● FS code is often old/dumb/bad
● FS code is sometimes modified to support weird shit, usually for

compatibility

● for example: on macOS there are symlinks on FAT32 volumes
● they are “emulated” using regular files with magic sizes and

content
● yeah :|

● every OS has tons of compatibility code like this
● that is rarely exercised or tested...

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

FS driver attack surface

● FS drivers are particularly vulnerable to malicious images

● since they are in large part just elaborate file format parsers

● so you can create impossible, forbidden structures

● hexedit / custom drivers / userspace drivers
● create hardlinked directories
● create an infinite directory loop
● create files with 2 hardlinks but linkcount of 1
● endless possibilities...

● traditionally users can’t mount disk images for exactly this reason

● except on macOS
● and some Linux distros

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Path resolution

● the process by which a user-supplied name can be turned into the kernel
representation of an inode

● two types of paths

● absolute “/etc/passwd”
● relative “./hello.txt”

● this depends on the CWD (Current Working Directory)
● this is in-band signaling: “does the file start with /”?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Path resolution

● path resolution is really unintuitive sometimes...

● since the filesystem is a hallucination
● you always see a snapshot of the filesystem structure
● which might be out of date by the time the kernel returns
● which is interesting, but is it important?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Path resolution

● oh yes!
● consider this:

$ echo hi > secret.txt

$ mkdir -p a/b/c/d/e/f/g/h/i/j/k/l/

$ cat a/b/c/d/e/f/g/h/i/j/k/l/../secret.txt

cat: a/b/c/d/e/f/g/h/i/j/k/l/../secret.txt: No such file or directory

● this obviously failed...
● but what if I move “l” at just the right time?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Path resolution

● process 1 loop:

$ cat a/b/c/d/e/f/g/h/i/j/k/l/../secret.txt
● process 2:

● $ mkdir ./x
● $ switchdirs ./x ./a/b/c/d/e/f/g/h/i/j/k/l

● switchdirs implements atomic rename swap in a loop

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Path resolution

● after a while the race is won
● between the lookup of l and the lookup of “..” (in l) - l will have

moved
● if this happens, “..” no longer points to k but to the (old)

parent of x
● and here, there is a file called secret.txt

● this race could be optimized a lot more, but you get my point

● you can’t trust anything once someone else has access to it

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX pitfalls

● The POSIX filesystem API was never meant to handle concurrent access
● any concurrent access across privilege boundaries is disastrous

● POSIX had some bad API choices:

● open()’s O_NOFOLLOW prevents resolving only the last path component
● fun fact: this was not even part of POSIX until POSIX.1-2008

● open() originally had no O_CLOEXEC → only since POSIX.1-2008
● if you executed any other program it got access to all your

currently opened fds
● rename() always follows symlinks (well, it’s complicated)
● there are many others

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX pitfalls

● access()/open() race
● the most classic TOCTOU (Time of Check Time of Use)
● proven to be impossible to secure

● symlinks

● a great feature
● but has to be explicitly handled by every program

● in-band signaling

● special meaning of “/” at the start of a path signals absolute path
● this becomes an issue if you can have the path truncated

● which is a super common bug that no-one cares about

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

POSIX pitfalls

● no copy() system call
● so every program has to implement their own file copy routines
● and they usually do it badly

● no recursive unlink() or rmdir() either

● good luck hand-rolling these
● this is impossible to do correctly, for a multitude of reasons

● too barebones

● every program has to implement tons of boilerplate
● so libraries usually provide this

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Well-known pitfalls

● symlinks are nasty
● tempfiles are a nightmare
● file descriptor names are hardcoded (stderr closing trick)

● close stderr before running the victim program

● victim opens a file for writing

● will be at fd #2, since that’s the lowest available fd
● victim writes an error message to the file it just opened since stderr == fd #2

● only useful with programs that start at a higher privilege than you
● suids (kernel mitigates these)
● entitled binaries on macOS

● Oops...

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Filesystem extended attributes

● Most filesystems support “extra” stuff
● extended attributes
● special mount flags

● example:

● ext2/3/4:
● append-only/immutable/undeletable files that override ALL

permission checks
● HFS+:

● attributes, resource forks, compression, etc…

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Resource fork rant

● macOS resource forks are insane:

$ rm a; echo hi>a; echo wat>a/..namedfork/rsrc; cat
a/..namedfork/rsrc

wat
● let’s add this insanity into the path lookup

● WHY NOT!?
● who needs consistency anyway?

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Resource fork rant

● if the meaning of special markers (“..” and “/”) is not consistent,

multiple interpretations will exist (duh)

● what does this look like: “./a/..namedfork/rsrc”?

● everyone:
● rsrc in the “..namedfork” directory of directory “a”

● macOS:
● the resource fork named “rsrc” of file “a”

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

mount pitfalls

● mountpoints can move
● if you can rename() their parents

● the same disk can be mounted multiple times (not on macOS)

● bind mounts

● the same FS is in two different locations at the same time
● can overlap for added hilarity

● union (macOS) / overlay (Linux) mounts

● lookups traverse to the FS under the current one if a file is not
found

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

macOS-specific pitfalls

● I have done a lot of macOS/iOS research recently
● these most likely won’t translate to Linux
● but I included them to give you some ideas

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

macOS-specific pitfalls

● mkdir(path) creates a directory through a dangling link if path ends in “/”

● a completely undocumented quirk of macOS

● /.vol/ supports accessing files by fsid + inodenum:

$ stat /etc/passwd

16777225 40077649 -rw-r--r-- 1 root wheel 0 8542 "Aug 12 13:45:20 2024" "May 7 09:01:44 2024" "May 14 12:02:37 2024" "May
 7 09:01:44 2024" 4096 8 0x20 /etc/passwd

$ stat /.vol/16777225/40077649

16777225 40077649 -rw-r--r-- 1 root wheel 0 8542 "Aug 12 13:45:20 2024" "May 7 09:01:44 2024" "May 14 12:02:37 2024" "May
 7 09:01:44 2024" 4096 8 0x20 /.vol/16777225/40077649

● not a security issue, but really convenient for exploitation

● inodenum is monotonically increasing
● /.file is similar to /.vol

● I think, help me out here

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

macOS-specific pitfalls

● unprivileged users can mount any image they want
● no comment

● macOS relies on extended attributes (xattrs) for security

● you can just mount a filesystem that doesn’t support them...
● filesystem is case-insensitive by default (macOS only, iOS is not)

● good edge cases like: rename(“./a” “./A”)
● random filenames are considerably less random...

● union mounts are available

● specially handled by the VFS everywhere

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

macOS-specific pitfalls

● firmlinks
● Apple’s magical bind-mounts

● also specially handled by the VFS everywhere
● doesn’t physically exist on disk

● hardlinked directories

● these are permitted(!) on some filesystems
● like HFS+
● creating them from the host OS is pretty restricted though

● they no longer seem to work on the latest version
● but you can always just create them on Linux or with a hex editor

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

macOS-specific pitfalls

● has AppleSingle/AppleDouble files
● only AppleDouble matters for us (AppleSingle is legacy)

● if a FS doesn’t support xattrs macOS will emulate them
● by creating another file of the same name and prefix “._”
● and storing the xattr value there
● a nightmare of a “solution”

● the VFS is responsible for this
● anything you do on the lower levels can clash with it

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

macOS-specific pitfalls

● kernel crash time!

$ mkdir mnt

$ touch mnt/._a

$ hdiutil create -size 128m -fs MS-DOS disk.dmg # create disk

$ hdiutil attach disk.dmg -owners off -nomount # mount disk

$ mount_msdos -o union /dev/disk4s1 mnt # remount as union

$ touch mnt/a
● this used to panic the kernel :)

● it got fixed recently (after two years)
● source: https://github.com/gergelykalman/macos-crasher

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Learn more

● You can get more information about all of this by using
● man pages

● “man ls” is a good place to start
● standards

● good to find interesting things
● not authoritative enough

● standard is broken surprisingly often
● kernel source code

● best source of information
● not as intimidating as you think

https://gergelykalman.com/

The missing guide to the security of filesystems and file APIs v1
https://gergelykalman.com (@gergely_kalman), 2024

Thank You

● Please reach out if you have questions:
● https://gergelykalman.com
● gergely [AT] gergelykalman.com
● @gergely_kalman on Twitter (X)

● Please tell me what you think about this!
● any suggestions / corrections?

https://gergelykalman.com/
https://gergelykalman.com/

